Problemi per il corso di teoria delle interazioni fondamentali giugno 2005

Primo Modulo

1. Urto Bhabha

Determinare la sezione d'urto differenziale per l'urto $e^+e^- \rightarrow e^+e^-$, nel limite di alta energia in cui la massa degli elettroni é trascurabile. Determinare il risultato in termini di invarianti di Mandelstam e quindi nel centro di massa della coppia leptonica. Discutere la dipendenza della sezione d'urto dall'energia e dall'angolo, ed in particolare studiare il limite $\theta \rightarrow 0$.

2. Rinormalizzazione del vertice di Yukawa

Considerare la teoria descritta dalla seguente lagrangiana (teoria di Yukawa):

$$\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi + g \bar{\psi} \psi \phi + \frac{1}{2} \left(\partial_{\mu} \phi \right)^{2} - \frac{1}{2} \mu^{2} \phi^{2}.$$

Determinare la funzione β per la costante d'accoppiamento g all'ordine più basso in teoria delle perturbazioni.

3. Decadimenti di bosoni vettori

Calcolare la larghezza di decadimento per i processi

$$W^{-}(p) \to b(k_1) + \bar{c}(k_2)$$

 $Z^0 \to \mu^{+}(k_1)\mu^{-}(k_2)$

senza trascurare le masse dei fermioni negli stati finali.

4. Produzione di bosoni vettori

- (a) Calcolare la sezione d'urto ad albero per i processi di annichilazione quark–antiquark in bosoni vettori: $q\bar{q} \to W^{\pm}$ e $q\bar{q} \to Z$. Discutere la distribuzione angolare dei bosoni vettori rispetto alla direzione dei quark entranti.
- (b) Calcolare ad albero le sezioni d'urto $u\bar{u} \to Z \to l^+l^-$ e $u\bar{d} \to W^+ \to l^+\nu_l$. Discutere le correlazioni angolari tra il leptone carico positivamente nello stato finale ed i quark entranti.

5. Angolo di mixing debole dall'urto elastico neutrino-leptone

Determinare l'angolo di mixing debole $\sin^2\theta_W$ dal rapporto delle sezioni d'urto totali

$$R = \frac{\sigma_{tot}(\nu_{\mu}e^{-} \to \nu_{\mu}e^{-})}{\sigma_{tot}(\bar{\nu}_{\mu}e^{-} \to \bar{\nu}_{\mu}e^{-})}.$$

6. Unitarietà della produzione di W in annichilazione e^+e^-

Calcolare l'ampiezza per il processo $e^+e^- \to W^+W^-$ in una teoria in cui gli elettroni sono accoppiati a bosoni vettori intermedi massivi di spin uno con il solo vertice di interazione $e\nu_eW$. Mostrare che questa ampiezza viola l'unitarietà ad alta energia.

Secondo Modulo

7. Teorema di equivalenza

(a) Ripetere nel modello standard il calcolo del processo dell'esercizio precedente, includendo cioè il vertice trilineare con tre bosoni di gauge. Verificare che l'ampiezza a grande energia non viola più l'unitarietà.

(b) Calcolare l'ampiezza per il processo $e^+e^- \to \phi^+\phi^-$ verificare che ad alta energia l'ampiezza per la produzione di una coppia W^+W^- é bene approssimata da quella con gli scalari non fisici (teorema di equivalenza). Verificare la relazione tra l'ampiezza per la produzione di una coppia $W_L^+W_L^-$ e quella per la produzione degli scalari non fisici (identità di Ward)

8. Asimmetria forward-backward nell'annichilazione e^+e^-

- (a) Calcolare nel modello standard elettrodebole, a livello ad albero e trascurando tutte le masse dei fermioni, la sezione d'urto differenziale $\frac{d\sigma}{d\cos\theta}$ per il processo $e^+e^- \to \mu^+\mu^-$.
- (b) Calcolare, in funzione dell'energia, l'asimmetria forward-backward, definita come

 $A(\theta) \equiv \frac{\sigma(\theta) - \sigma(\pi - \theta)}{\sigma(\theta) + \sigma(\pi - \theta)}$

(c) Valutare l'asimmetria forward-backward alla risonanza dello Z_0 , esprimere il risultato in termini degli accoppiamenti vettoriale e vettoriale-assiale dello Z_0 ai leptoni carichi e determinare quindi il valore del seno quadrato dell'angolo di mixing debole $\sin^2 \theta_W$. Suggerimento: Per energie nel centro di massa $\sqrt{s} \simeq m_Z$, il diagramma con lo scambio di un bosone Z_0 diventa risonante. Utilizzare per il propagatore del bosone Z_0 l'espressione $\frac{i g^{\mu\nu}}{p^2 - m_Z^2 + i \Gamma_Z m_Z}$, dove Γ_Z è la larghezza totale di decadimento dello Z_0 .

9. Decadimenti del bosone di Higgs

Calcolare la larghezza di decadimento ad albero per i processi $H \to gg$, $H \to b\bar{b}$, $H \to WW$, $H \to ZZ$.

Determinare il branching ratio per i quattro canali studiati, detto branching ratio del decadimento $H \to f$ il rapporto $\mathrm{BR}(f) \equiv \frac{\Gamma_{H \to f}}{\Gamma_{tot}}$. Discutere la dipendenza del risultato dalla massa del bosone di Higgs.

10. Calcolo dei coefficienti di Wilson

Scrivere l'operator-product expansion per il prodotto di due correnti assiali (scattering di neutrini) $J_5^{\mu}(x)J_5^{\nu}(0)$, limitatamente agli operatori fermionici, e determinare i coefficienti di Wilson corrispondenti all'ordine più basso in teoria delle perturbazioni.

11. Determinazione delle distribuzioni partoniche

Considerare le sezioni d'urto di produzione $p\bar{p} \to W^{\pm}$. Utilizzando il risultato dell'esercizio 4, dimostrare che in un *collider* protone-antiprotone la misura dell'asimmetria di carica

$$A = \frac{\frac{d\sigma^+}{dy_e} - \frac{d\sigma^-}{dy_e}}{\frac{d\sigma^+}{dy_e} + \frac{d\sigma^-}{dy_e}}$$

fornisce una determinazione del rapporto delle distribuzioni di quark $up \in down \ d(x)/u(x)$.

Suggerimento: la rapidità è definita come $y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$, il suo differenziale è invariante per boost lungo l'asse z

12. Produzione di tre jet nell'annichilazione e^+e^-

Calcolare l'ampiezza ad albero per il processo

$$e^+(p') + e^-(p) \rightarrow q(k_1) + \bar{q}(k_2) + q(k_3),$$

dove tutte le particelle (leptoni entranti e partoni uscenti) sono a massa nulla. Parametrizzare la cinematica mediante l'energia nel centro di massa s ed i parametri adimensionali $x_i = 2k_i \cdot q/q^2$ e calcolare la sezione d'urto differenziale $\frac{d^2\sigma}{dx_1dx_2}$. Discutere la sezione d'urto totale.

13. Urto pione–nucleone nel modello σ

Calcolare le ampiezze di scattering ad albero per i processi

$$n^{a}(p_{1}) + n^{b}(p_{2}) \rightarrow n^{c}(p_{3}) + n^{d}(p_{4})$$

 $\pi^{i}(k_{1}) + n^{a}(p_{1}) \rightarrow \pi^{j}(k_{2}) + n^{b}(p_{2})$

dove π^i e n^a sono rispettivamente nucleoni e pioni con isospin ed impulso generico. Eseguire il calcolo sia nel modello sigma lineare che nel modello nonlineare e confrontare i risultati.