Problemi per il corso di teoria delle interazioni fondamentali giugno 2009

Primo Modulo

1. Urto elettrone-muone.

Si consideri il processo di QED $e^-\mu^- \to e^-\mu^-$.

- (a) Si consideri il processo nel sistema di riferimento in cui il muone è a riposo prima dell'urto. Si determini l'energia E' dell'elettrone uscente in termini dell'energia E dell'elettrone entrante e dell'angolo di scattering θ .
- (b) Si determini quindi la sezione d'urto al primo ordine in termini di E e θ . Si studi questa sezione d'urto nei limiti di bassa energia $E \to 0$, di alta energia $E >> m_{\mu}$, e di elettrone ultrarelativistico ma muone nonrelativistico $E \sim m_{\mu}$.
- (c) Si ripeta il calcolo ai punti precedenti nella teoria elettrodebole. Si confronti il risultato con quello in pura QED.

2. Flusso di rinormalizzazione.

Si consideri una teoria con due campi scalari reali, descritta dalla lagrangiana

$$\mathcal{L} = \mathcal{L}_{1} + \mathcal{L}_{2} - \mathcal{V}$$

$$\mathcal{L}_{1} = \frac{1}{2} \partial_{\mu} \varphi_{1} \partial^{\mu} \varphi_{1} - \frac{1}{2} m_{1}^{2} \varphi_{1}^{2}$$

$$\mathcal{L}_{2} = \frac{1}{2} \partial_{\mu} \varphi_{2} \partial^{\mu} \varphi_{2} - \frac{1}{2} m_{2}^{2} \varphi_{2}^{2}$$

$$\mathcal{V} = \frac{1}{4!} \left(\lambda_{1} \varphi_{1}^{4} + \lambda_{2} \varphi_{2}^{4} + \delta \varphi_{1}^{2} \varphi_{2}^{2} \right). \tag{1}$$

(a) Si scrivano le regole di Feynman di questa teoria, e si calcolino le sezioni d'urto ad albero per i processi d'urto $\varphi_1\varphi_1 \to \varphi_1\varphi_1$, $\varphi_2\varphi_2 \to \varphi_2\varphi_2$ e $\varphi_1\varphi_1 \to \varphi_2\varphi_2$.

- (b) Si calcolino le funzioni β per i parametri λ_1 , λ_2 e δ al primo ordine non banale in teoria delle perturbazioni.
- (c) Si scriva la soluzione dell'equazione di gruppo di rinormalizzazione che fornisce la dipendenza di λ_1 , λ_2 e δ dalla scala μ^2 .
- (d) Si discuta il comportamento del risultato ottenuto ai due punti precedenti al variare della scala μ^2 a seconda che $m_1 \approx m_2$ oppure $m_1 << m_2$.

3. Decadimento β inverso.

Si consideri il processo $\bar{\nu}_e + P \rightarrow e^+ + N$, dove P ed N indicano un protone ed un neutrone

- (a) Si determini, nel sistema di riferimento in cui il protone è a riposo prima dell'urto, l'energia minima dell'antineutrino incidente per cui il processo può avvenire (energia di soglia).
- (b) Si determini al primo ordine la sezione d'urto differenziale per il processo, nell'approssimazione in cui il protone ed il neutrone sono considerati come puntiformi.
- (c) Si discuta come si modificherebbe la trattazione al punto precedente quando il protone ed il neutrone vengono considerati come oggetti estesi (non è necessario calcolare la sezione d'urto in questo caso). Si discuta inoltre quando l'approssimazione di nucleone puntiforme sia adeguata.

4. Larghezza del top

Si consideri il decadimento del quark top nel modello standard.

- (a) Si determini la larghezza di decadimento al primo ordine nell' approssimazione di un decadimento sequenziale $t \to W + b$ seguito da un decadimento del W. Si trascurino tutte le masse, tranne quelle del t, del b e del W.
- (b) Si determinino i branching ratios nei vari canali di decadimento permessi.
- (c) Si determini l'intervallo di valori permessi per l'energia del *b* nel caso in cui il *W* possa essere virtuale (decadimento del *t* in tre corpi).

Secondo Modulo

5. Produzione associata di un bosone Z e di un bosone di Higgs

- (a) Si calcoli la sezione d'urto totale per il processo $e^+e^- \to ZH$, in funzione dell'energia nel centro di massa del sistema.
- (b) Si considerino in particolare le energie di LEP1 ($\sqrt{s} = m_z$), di LEP2 ($\sqrt{s} = 208 \text{ GeV}$) e di un futuro collisore lineare e^+e^- ($\sqrt{s} = 1 \text{ TeV}$). Si discuta, in funzione di \sqrt{s} , per quali valori della massa del bosone di Higgs questo processo può essere osservato e, nei vari casi, quali sono i modi di decadimento permessi.
- (c) Si calcoli la sezione d'urto partonica del processo $q\bar{q} \to ZH$ e si scriva l'espressione per la sezione d'urto adronica a LHC ($\sqrt{s} = 14$ TeV), per il processo $pp \to ZH + X$ ottenuto con la convoluzione del sottoprocesso partonico appena calcolato.
- (d) (Facoltativo) Si scriva un programma in grado di utilizzare la libreria LHAPDF per le distribuzioni partoniche e si discuta il contributo relativo dei vari sapori di quarks (u, d, c, s, b) alla sezione d'urto totale.

6. Decadimento del W e dello Z all'ordine α_s

Si considerino i decadimenti del W e dello Z all'ordine più basso delle interazioni deboli.

- (a) Si calcolino i tassi di decadimento al primo ordine in teoria delle perturbazioni.
- (b) Si determinino i tassi relativi di decadimento in leptoni ed adroni, distinguendo leptoni carichi e neutrini nel caso dello Z. Si confrontino i risultati trovati con i valori sperimentali del PDG.
- (c) Si disegnino i diagrammi di Feynman che contribuiscono ai processi calcolati ai punti precedenti fino al primo ordine nella costante di accoppiamento forte α_s .
- (d) Si determinino le correzioni di ordine α_s ai tassi di decadimento calcolati ai punti (a-b), sapendo che la correzione virtuale al vertice di un quark di carica Q all'ordine α_s in $d = 4 2\varepsilon$ dimensioni

è data da

$$\Gamma_{\text{virt}} = \Gamma_0 \frac{3(1-\varepsilon)}{(3-2\varepsilon)\Gamma(2-2\varepsilon)} (4\pi)^{2\varepsilon} \times 3Q^2 \frac{C_F \alpha_s}{2\pi} \left(-\frac{2}{\varepsilon^2} - \frac{3}{\varepsilon} - 8 + \pi^2 + O(\varepsilon) \right)$$

dove Γ_0 è il vertice non corretto. Si confrontino nuovamente i risultati con i valori sperimentali.

7. Produzione di jet

Si consideri la produzione di uno stato finale fortemente interagente in collisioni e^+e^- , pp oppure $p\bar{p}$. Si definisce sezione d'urto di jet di Sterman-Weinberg la sezione d'urto per un evento in cui è possibile definire nel sistema del centro di massa una coppia di coni coassiali di apertura angolare δ , tali che tutta l'energia dello stato finale, esclusa al più una frazione ϵ , sia contenuta nei due coni.

- (a) Si disegnino tutti i diagrammi di Feynman che contribuiscono alla produzione di jet all'ordine più basso in teoria delle perturbazioni, in tutti e tre i casi di urto e^+e^- , pp oppure $p\bar{p}$.
- (b) Nel caso di stato iniziale adronico, si scriva l'espressione fattorizzata per la sezione d'urto $\frac{d^2\sigma}{d\cos\theta dM_{JJ}^2}$, dove M_{JJ}^2 è la massa invariante del sistema di due jet e $\cos\theta$ è l'angolo tra la direzione di uscita di uno dei due jet e l'asse della collisione nel sistema di riferimento del centro di massa dei due jet.
- (c) Nel caso di stato inziale leptonico, si determini la sezione d'urto del punto precedente al più basso ordine perturbativo. Si determini inoltre la sezione d'urto $\frac{d^2\sigma}{dp_Td\eta}$ dove p_T ed η sono rispettivamente il modulo della componente dell'impulso trasverso e la rapidità di uno dei due jet.
- (d) Si determini la correzione all'ordine α_s alla sezione $\frac{d^2\sigma}{d\cos\theta dM_{JJ}^2}$, sfruttando le tecniche sviluppate per rispondere alla domanda (6.d)

8. Mixing $B_0 - \bar{B}_0$

- (a) Si esprima la differenza di massa tra i mesoni B_0 e \bar{B}_0 in termini degli autovalori dell'hamiltoniana efficace $\Delta B=2$ nella base degli stati $\begin{pmatrix} B_0 \\ \bar{B}_0 \end{pmatrix}$.
- (b) Si determini la lagrangiana efficace del punto precedente, in analogia con quanto fatto a lezione nel caso del mixing $K_0 \bar{K}_0$.
- (c) Si discuta quali siano i contributi dominanti allo splitting di massa tra i due mesoni, in termini degli elementi della matrice CKM e delle masse dei quarks e si calcoli lo splitting di massa Δm .
- (d) Si disegnino i diagrammi di Feynman che contribuiscono all'elemento di matrice Γ_{12} dell'hamiltoniana efficace responsabile del decadimento dei mesoni.
- (e) Sfruttando l'unitarietà, si dimostri che Γ_{12} è determinato dal prodotto $V_{bt}V_{td}^*$ di elementi di matrice CKM. Si discutano le conseguenze di questo fatto per la violazione di CP nell'oscillazione di questi mesoni.