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Here we consider a one-dimensional system whose dynamics are described by the Hamiltonian

H = ~
[
ωa†a− µ

(
a† + a

)]
, (1)

where ω is a real and positive constant, µ is a real constant and a is an operator such that[
a, a†

]
= 1. (2)

We define also the three states |0〉, |1〉 and |2〉 such that

a|0〉 = 0; |1〉 = a†|0〉; |2〉 =
1√
2
a†|1〉. (3)

(1) Here one should note that a and a† satisfy the same commutation relations as the creation and
annihilation operators for the one-dimensional harmonic oscillator, and the first of Eq. (3) is the
same equation that defines the vacuum state of the harmonic oscillator for which a and a† are
creation and annihilation operators. It immediately follows that the expectation value of a† in the
three given states vanishes.

Thus after acting on a state |n〉 with the creation operator a†, it is orthogonal to it’s adjoint 〈n|.
Hence the expectation value of a† in any state |n〉 is zero.

(2) Using the fact that the commutation relations Eq. (2) are the same as in the case of the creation
and annihilation operators for a harmonic oscillator, we know that N = a†a is the number operator,
whose first three eigentstaes are those given in Eq. (3). Combining this with the conclusion from the
previous exercise, we find

〈n|H|n〉 = 〈n|~
(
ωa†a− µ

(
a† + a

))
|n〉 = ~ωn (4)

with n = 0, 1, 2.

(3) Let us define
b = a+ δ, (5)

which allows us to rewrite the hamiltonian:

1

~
H = ωa†a− µ

(
a† + a

)
, (6)

= ω(b† − δ)(b− δ)− µ
(
(b† − δ) + (b− δ)

)
, (7)

= ωb†b− (ωδ + µ)b† − (ωδ + µ)b+ ωδ2 + 2µδ, (8)

= ωb†b− µ2

ω
, (9)

where to obtain the last line, we defined

δ = −µ
ω
. (10)

From this it can be seen that

K = −~µ
2

ω
. (11)

1



(4) The commutation of b† and b is

[b, b†] = [a+ δ, a† + δ] = [a, a†] = 1. (12)

Where it can now be seen that the Hamiltonian is of the same form, up to an additive constant, as
that of the harmonic oscillator with b† and b the creation and annihilation operators, respectively.
This means that we can define the number operator N = b†b, resulting in a Hamiltonian of a well
known form:

H = ~ωN +K, (13)

where the spectrum of eigenvalues of H is

〈n̄|H|n̄〉 = En̄ = ~ωn̄+K, (14)

with n̄ a non-negative integer. The eigenstates of H are denoted as |n̄〉 in order to stress that they
are not the same as the eigenstates of a†a. The states of Eq. (3), denoted by |n〉, are the first three
eigenstates of a†a.

(5) Here we define the operators

x̂ =

√
~

2mω

(
a+ a†

)
, (15)

ŷ =

√
~

2mω

(
b+ b†

)
. (16)

Which are related by

ŷ =

√
~

2mω

(
a+ a† + 2δ

)
= x̂+

√
2~
mω

δ. (17)

So x̂ and ŷ are position operators related by a fixed constant translation.

From this, one can quickly see that

[ŷ, x̂] =

[
x̂+

√
2~
mω

δ, x̂

]
= 0, (18)

meaning ŷ and x̂ are compatible.

Two compatible operators have a common eigenbasis. In this case this becomes clear if we consider

x̂|x0〉 = x0|x0〉, (19)

and also

ŷ|x0〉 =

(
x̂+

√
2~
mω

δ

)
|x0〉 =

(
x0 +

√
2~
mω

δ

)
|x0〉, (20)

thus |x0〉 is also an eigenstate of ŷ, but with an eigenvalue translated by a constant.

(6) If |y0〉 is an eigenstate of ŷ with eigenvalue y0

ŷ|y0〉 = y0|y0〉, (21)

then using Eq. (20) we see that |y0〉 is also an eigenstate of x̂ with eigenvalue

x̂|y0〉 =

(
y0 −

√
2~
mω

δ

)
|y0〉. (22)

But two eigenstates |x1〉, |x2〉 of x̂ with eigenvalues x1, x2 satisfy 〈x1|x2〉 = δ(x1 − x2). So

〈x0|y0〉 = δ

(
x0 −

(
y0 −

√
2~
mω

δ

))
. (23)
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(7) Here we are asked to determine the expectation value of x̂ in the state |0〉 given in Eq. (3). In this
case the expectation value of x is

〈0|x̂|0〉 =
~

2mω
〈0|(a+ a†)|0〉 = 0. (24)

We are also asked to provide the expectation value in the ground state of the Hamiltonian H of
Eq. (1), that is

〈0̄|x̂|0̄〉 =

√
~

2mω
〈0̄|(a+ a†)|0̄〉 =

√
~

2mω
〈0̄|(b+ b† − 2δ)|0̄〉 = −

√
2~
mω

δ (25)

(8) The time-dependent state |0(t)〉 is
|0(t)〉 = e−iHt/~|0〉. (26)

The probability is thus

P = |〈0̄|0(t)〉|2 =
∣∣|〈0̄|e−iHt/~|0〉∣∣2 . (27)

But the ground state |0̄〉 is an eigenstate of H, so

〈0̄|e−iHt/~ = 〈0̄|e−iE0̄t/~, (28)

because H is hermitian so its left eigenstates are the same as the right eigenstates.

Thus it follows that the probability P is time-independent:

P = |〈0̄|0〉|2. (29)

(9) Here again the argument for time-independence that was presented in the previous exercise applies.
After performing the position measurement and finding the position x = x0, the corresponding wave
function is a delta function:

ψx0(x) = δ(x− x0), (30)

where x now are eigenvalues of the position operator x̂. In terms of the eigenvalues of ŷ this
corresponds to

ψx0(y) = δ

(
y −

(
x0 −

√
2~
mω

δ

))
, (31)

where we have used Eq. (22)

The requested probability is then

P = |〈ψx0|0̄〉|2 =

∣∣∣∣∣
∫ ∞
−∞

dxψ0(x)δ

(
x−

√
2~
mω

δ

)∣∣∣∣∣
2

=

∣∣∣∣∣ψ0̄

(
x−

√
2~
mω

δ

)∣∣∣∣∣
2

, (32)

where ψ0(x) is the standard harmonic oscillator ground state wave function given in Eq. (8.63) of
the textbook.

(10) The state |0〉 is a coherent state: this can be seen by comparing our case to the property of a coherent
state presented in Eq. 8.116 of the textbook (section 8.5.1):

b|0〉 = (a+ δ)|0〉 = δ|0〉. (33)

Using Eq. 8.124 from the textbook, we then find

|〈0̄|0〉|2 = e−δ
2

. (34)
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(11) The simplest way to proceed is to determine the time evolution of b:

db

dt
=
da

dt
=

1

i~
[a,H] = −i

(
ω[a, a†a]− µ[a, a†]

)
= −i (ωa− µ) = −iωb, (35)

thus we have
b(t) = e−iωtb. (36)

This immediately determines the time evolution of a and also of x̂:

x̂(t) =

√
~

2mω

(
be−iωt + b†eiωt − 2δ

)
. (37)

But the operator b annihilates the vacuum state of H, b|0̄〉 = 0, so only the last term contributes to
the expectation value and we get for all t

〈0̄|x̂(t)|0̄〉 = −
√

2~
mω

δ. (38)
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