QUANTUM MECHANICS I EXAM

03 February 2021
Answers sheet

Here we consider a one-dimensional system whose dynamics are described by the Hamiltonian

$$
\begin{equation*}
H=\hbar\left[\omega a^{\dagger} a-\mu\left(a^{\dagger}+a\right)\right] \tag{1}
\end{equation*}
$$

where ω is a real and positive constant, μ is a real constant and a is an operator such that

$$
\begin{equation*}
\left[a, a^{\dagger}\right]=1 \tag{2}
\end{equation*}
$$

We define also the three states $|0\rangle,|1\rangle$ and $|2\rangle$ such that

$$
\begin{equation*}
a|0\rangle=0 ; \quad|1\rangle=a^{\dagger}|0\rangle ; \quad|2\rangle=\frac{1}{\sqrt{2}} a^{\dagger}|1\rangle . \tag{3}
\end{equation*}
$$

(1) Here one should note that a and a^{\dagger} satisfy the same commutation relations as the creation and annihilation operators for the one-dimensional harmonic oscillator, and the first of Eq. (3) is the same equation that defines the vacuum state of the harmonic oscillator for which a and a^{\dagger} are creation and annihilation operators. It immediately follows that the expectation value of a^{\dagger} in the three given states vanishes.
Thus after acting on a state $|n\rangle$ with the creation operator a^{\dagger}, it is orthogonal to it's adjoint $\langle n|$. Hence the expectation value of a^{\dagger} in any state $|n\rangle$ is zero.
(2) Using the fact that the commutation relations Eq. (2) are the same as in the case of the creation and annihilation operators for a harmonic oscillator, we know that $N=a^{\dagger} a$ is the number operator, whose first three eigentstaes are those given in Eq. (3). Combining this with the conclusion from the previous exercise, we find

$$
\begin{equation*}
\langle n| H|n\rangle=\langle n| \hbar\left(\omega a^{\dagger} a-\mu\left(a^{\dagger}+a\right)\right)|n\rangle=\hbar \omega n \tag{4}
\end{equation*}
$$

with $n=0,1,2$.
(3) Let us define

$$
\begin{equation*}
b=a+\delta, \tag{5}
\end{equation*}
$$

which allows us to rewrite the hamiltonian:

$$
\begin{align*}
\frac{1}{\hbar} H & =\omega a^{\dagger} a-\mu\left(a^{\dagger}+a\right) \tag{6}\\
& =\omega\left(b^{\dagger}-\delta\right)(b-\delta)-\mu\left(\left(b^{\dagger}-\delta\right)+(b-\delta)\right) \tag{7}\\
& =\omega b^{\dagger} b-(\omega \delta+\mu) b^{\dagger}-(\omega \delta+\mu) b+\omega \delta^{2}+2 \mu \delta \tag{8}\\
& =\omega b^{\dagger} b-\frac{\mu^{2}}{\omega} \tag{9}
\end{align*}
$$

where to obtain the last line, we defined

$$
\begin{equation*}
\delta=-\frac{\mu}{\omega} . \tag{10}
\end{equation*}
$$

From this it can be seen that

$$
\begin{equation*}
K=-\hbar \frac{\mu^{2}}{\omega} \tag{11}
\end{equation*}
$$

(4) The commutation of b^{\dagger} and b is

$$
\begin{equation*}
\left[b, b^{\dagger}\right]=\left[a+\delta, a^{\dagger}+\delta\right]=\left[a, a^{\dagger}\right]=1 . \tag{12}
\end{equation*}
$$

Where it can now be seen that the Hamiltonian is of the same form, up to an additive constant, as that of the harmonic oscillator with b^{\dagger} and b the creation and annihilation operators, respectively. This means that we can define the number operator $N=b^{\dagger} b$, resulting in a Hamiltonian of a well known form:

$$
\begin{equation*}
H=\hbar \omega N+K \tag{13}
\end{equation*}
$$

where the spectrum of eigenvalues of H is

$$
\begin{equation*}
\langle\bar{n}| H|\bar{n}\rangle=E_{\bar{n}}=\hbar \omega \bar{n}+K, \tag{14}
\end{equation*}
$$

with \bar{n} a non-negative integer. The eigenstates of H are denoted as $|\bar{n}\rangle$ in order to stress that they are not the same as the eigenstates of $a^{\dagger} a$. The states of Eq. (3), denoted by $|n\rangle$, are the first three eigenstates of $a^{\dagger} a$.
(5) Here we define the operators

$$
\begin{align*}
& \hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right), \tag{15}\\
& \hat{y}=\sqrt{\frac{\hbar}{2 m \omega}}\left(b+b^{\dagger}\right) . \tag{16}
\end{align*}
$$

Which are related by

$$
\begin{equation*}
\hat{y}=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}+2 \delta\right)=\hat{x}+\sqrt{\frac{2 \hbar}{m \omega}} \delta . \tag{17}
\end{equation*}
$$

So \hat{x} and \hat{y} are position operators related by a fixed constant translation.
From this, one can quickly see that

$$
\begin{equation*}
[\hat{y}, \hat{x}]=\left[\hat{x}+\sqrt{\frac{2 \hbar}{m \omega}} \delta, \hat{x}\right]=0 \tag{18}
\end{equation*}
$$

meaning \hat{y} and \hat{x} are compatible.
Two compatible operators have a common eigenbasis. In this case this becomes clear if we consider

$$
\begin{equation*}
\hat{x}\left|x_{0}\right\rangle=x_{0}\left|x_{0}\right\rangle, \tag{19}
\end{equation*}
$$

and also

$$
\begin{equation*}
\hat{y}\left|x_{0}\right\rangle=\left(\hat{x}+\sqrt{\frac{2 \hbar}{m \omega}} \delta\right)\left|x_{0}\right\rangle=\left(x_{0}+\sqrt{\frac{2 \hbar}{m \omega}} \delta\right)\left|x_{0}\right\rangle, \tag{20}
\end{equation*}
$$

thus $\left|x_{0}\right\rangle$ is also an eigenstate of \hat{y}, but with an eigenvalue translated by a constant.
(6) If $\left|y_{0}\right\rangle$ is an eigenstate of \hat{y} with eigenvalue y_{0}

$$
\begin{equation*}
\hat{y}\left|y_{0}\right\rangle=y_{0}\left|y_{0}\right\rangle, \tag{21}
\end{equation*}
$$

then using Eq. (20) we see that $\left|y_{0}\right\rangle$ is also an eigenstate of \hat{x} with eigenvalue

$$
\begin{equation*}
\hat{x}\left|y_{0}\right\rangle=\left(y_{0}-\sqrt{\frac{2 \hbar}{m \omega}} \delta\right)\left|y_{0}\right\rangle . \tag{22}
\end{equation*}
$$

But two eigenstates $\left|x_{1}\right\rangle,\left|x_{2}\right\rangle$ of \hat{x} with eigenvalues x_{1}, x_{2} satisfy $\left\langle x_{1} \mid x_{2}\right\rangle=\delta\left(x_{1}-x_{2}\right)$. So

$$
\begin{equation*}
\left\langle x_{0} \mid y_{0}\right\rangle=\delta\left(x_{0}-\left(y_{0}-\sqrt{\frac{2 \hbar}{m \omega}} \delta\right)\right) \tag{23}
\end{equation*}
$$

(7) Here we are asked to determine the expectation value of \hat{x} in the state $|0\rangle$ given in Eq. (3). In this case the expectation value of x is

$$
\begin{equation*}
\langle 0| \hat{x}|0\rangle=\frac{\hbar}{2 m \omega}\langle 0|\left(a+a^{\dagger}\right)|0\rangle=0 . \tag{24}
\end{equation*}
$$

We are also asked to provide the expectation value in the ground state of the Hamiltonian H of Eq. (1), that is

$$
\begin{equation*}
\langle\overline{0}| \hat{x}|\overline{0}\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\langle\overline{0}|\left(a+a^{\dagger}\right)|\overline{0}\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\langle\overline{0}|\left(b+b^{\dagger}-2 \delta\right)|\overline{0}\rangle=-\sqrt{\frac{2 \hbar}{m \omega}} \delta \tag{25}
\end{equation*}
$$

(8) The time-dependent state $|0(t)\rangle$ is

$$
\begin{equation*}
|0(t)\rangle=e^{-i H t / \hbar}|0\rangle . \tag{26}
\end{equation*}
$$

The probability is thus

$$
\begin{equation*}
P=|\langle\overline{0} \mid 0(t)\rangle|^{2}=\left.\left|\left|\langle\overline{0}| e^{-i H t / \hbar}\right| 0\right\rangle\right|^{2} . \tag{27}
\end{equation*}
$$

But the ground state $|\overline{0}\rangle$ is an eigenstate of H, so

$$
\begin{equation*}
\langle\overline{0}| e^{-i H t / \hbar}=\langle\overline{0}| e^{-i E_{\overline{0}} t / \hbar}, \tag{28}
\end{equation*}
$$

because H is hermitian so its left eigenstates are the same as the right eigenstates.
Thus it follows that the probability P is time-independent:

$$
\begin{equation*}
P=|\langle\overline{0} \mid 0\rangle|^{2} . \tag{29}
\end{equation*}
$$

(9) Here again the argument for time-independence that was presented in the previous exercise applies. After performing the position measurement and finding the position $x=x_{0}$, the corresponding wave function is a delta function:

$$
\begin{equation*}
\psi_{x_{0}}(x)=\delta\left(x-x_{0}\right), \tag{30}
\end{equation*}
$$

where x now are eigenvalues of the position operator \hat{x}. In terms of the eigenvalues of \hat{y} this corresponds to

$$
\begin{equation*}
\psi_{x_{0}}(y)=\delta\left(y-\left(x_{0}-\sqrt{\frac{2 \hbar}{m \omega}} \delta\right)\right) \tag{31}
\end{equation*}
$$

where we have used Eq. (22)
The requested probability is then

$$
\begin{equation*}
P=\left|\left\langle\psi_{x_{0}} \mid \overline{0}\right\rangle\right|^{2}=\left|\int_{-\infty}^{\infty} d x \psi_{0}(x) \delta\left(x-\sqrt{\frac{2 \hbar}{m \omega}} \delta\right)\right|^{2}=\left|\psi_{\overline{0}}\left(x-\sqrt{\frac{2 \hbar}{m \omega}} \delta\right)\right|^{2} \tag{32}
\end{equation*}
$$

where $\psi_{0}(x)$ is the standard harmonic oscillator ground state wave function given in Eq. (8.63) of the textbook.
(10) The state $|0\rangle$ is a coherent state: this can be seen by comparing our case to the property of a coherent state presented in Eq. 8.116 of the textbook (section 8.5.1):

$$
\begin{equation*}
b|0\rangle=(a+\delta)|0\rangle=\delta|0\rangle \tag{33}
\end{equation*}
$$

Using Eq. 8.124 from the textbook, we then find

$$
\begin{equation*}
|\langle\overline{0} \mid 0\rangle|^{2}=e^{-\delta^{2}} \tag{34}
\end{equation*}
$$

(11) The simplest way to proceed is to determine the time evolution of b :

$$
\begin{equation*}
\frac{d b}{d t}=\frac{d a}{d t}=\frac{1}{i \hbar}[a, H]=-i\left(\omega\left[a, a^{\dagger} a\right]-\mu\left[a, a^{\dagger}\right]\right)=-i(\omega a-\mu)=-i \omega b, \tag{35}
\end{equation*}
$$

thus we have

$$
\begin{equation*}
b(t)=e^{-i \omega t} b \tag{36}
\end{equation*}
$$

This immediately determines the time evolution of a and also of \hat{x} :

$$
\begin{equation*}
\hat{x}(t)=\sqrt{\frac{\hbar}{2 m \omega}}\left(b e^{-i \omega t}+b^{\dagger} e^{i \omega t}-2 \delta\right) . \tag{37}
\end{equation*}
$$

But the operator b annihilates the vacuum state of $H, b|\overline{0}\rangle=0$, so only the last term contributes to the expectation value and we get for all t

$$
\begin{equation*}
\langle\overline{0}| \hat{x}(t)|\overline{0}\rangle=-\sqrt{\frac{2 \hbar}{m \omega}} \delta . \tag{38}
\end{equation*}
$$

