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Answers sheet

We consider a quantum system that can be found in four states, referred to as |1〉, |2〉, |3〉 and |4〉.
Also consider the following system states:

|ψ1〉 =
1√
3

[|1〉+ (1 + i)|2〉], (1)

|ψ2〉 =
1√
2

[i|1〉+ |3〉], (2)

|ψ3〉 =

√
2

3
|1〉+

√
1

3
|4〉, (3)

|ψ4〉 =
1√
2

[|3〉+ |4〉]. (4)

(1) The probability Pi of a system prepared in state |1〉 to be detected in a state |ψi〉 is

Pi = |〈1|ψi〉|2 , (5)

thus for the system states given by Eq. (1) to Eq. (4) above we have

P1 =
1

3
, P2 =

1

2
, P3 =

2

3
, P4 = 0. (6)

(2) The normalization N is defined such that |〈φ|φ〉|2 = 1. Let us rewrite |φ〉 by plugging in Eq. (1) to
Eq. (4):

|φ〉 = N

[
|ψ1 + 2i

√
2

3
|ψ2〉

]
, (7)

=
N√

3
[−|1〉+ (1 + i)|2〉+ 2i|3〉] . (8)

We now find

〈φ|φ〉 =
N2

3
[〈1|1〉+ 2〈2|2〉+ 4〈3|3〉] = N27

3
, (9)

which means that the normalization constant N is

N =

√
3

7
. (10)

The probability that a system prepared in this state |φ〉 will be detected in state |1〉 is

|〈1|φ〉|2 =

∣∣∣∣− N√
3

∣∣∣∣2 =
1

7
. (11)
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(3) Now suppose that a system is in the state |φ〉, a first measurement is performed which reveals that
it is in the state |ψ2〉. The probability of finding this result is

|〈ψ2 | φ〉|2 = N2

∣∣∣∣∣〈ψ2 | ψ1〉+ 2i

√
2

3
〈ψ2 | ψ2〉

∣∣∣∣∣
2

, (12)

= N2

∣∣∣∣∣− i√
2
√

3
〈1 | 1〉+ 2i

√
2

3
〈ψ2 | ψ2〉

∣∣∣∣∣
2

(13)

= N23

2
=

9

14
. (14)

The probability that a subsequent measurement will reveal the system in a state |1〉 is

|〈1 | ψ2〉|2 =

∣∣∣∣ i√2
〈1 | 1〉

∣∣∣∣2 =
1

2
. (15)

(4) An operator O1 associated with an observable that takes the value +1 if the system is in the state
|ψ2〉, and 0 if the system is in any state orthogonal to |ψ2〉 can be written in a basis of states |1〉,
|2〉, |3〉 and |4〉 as

O1 = |ψ2〉〈ψ2| =
1

2
(i|1〉+ |3〉)(−i〈1|+ 〈3|) =

1

2
(|1〉〈1|+ i|1〉〈3| − i|3〉〈1|+ |3〉〈3|) , (16)

=
1

2


1 0 i 0
0 0 0 0
−i 0 1 0
0 0 0 0

 . (17)

(5) In exercise (4) is is stated that the operator takes the value +1 if the system is detected in the state
|ψ2〉 and 0 if the system is detected in any state orthogonal to |ψ2〉. Thus the two eigenvalues of O1

are +1 and 0, meaning the possible energy values of the system with a Hamiltonian H = EO1 are
E and 0.

The probability of an energy measurement for a system prepared in state |ψ1〉 returning E is

|〈ψ2 | ψ1〉|2 =

∣∣∣∣ 1√
2
√

3
(−i〈1|+ 〈3|)(|1〉+ (1 + i)|2〉)

∣∣∣∣2 =

∣∣∣∣−i√6
〈1 | 1〉

∣∣∣∣2 =
1

6
, (18)

from this it follows that the probability of such a measurement returning an energy of 0 is 5/6.

(6) The basis of this system consists of four basis states, so a generic state vector depends on four
complex constants and thus eight real parameters. However, because the normalization condition
restricts one degree of freedom, we are left with seven free parameters. Then we are also only able to
observe relative phases, and not the global phase, so the global phase is a non-observable parameter.
Let us write a general vector of the given system as

|ϕ〉 = Neiα
(
|1〉+ Aeiβ|2〉+Beiγ|3〉+ Ceiδ|4〉

)
, (19)

where N and α are the unobservable normalization and global phase we just mentioned. That leaves
six observable parameters. For a system described by the Hamiltonian O1, the eigenvalue 0 is trice
degenerate and this means that another four parameters are indistinguishable when performing a
measurement using the Hamiltonian, leaving two observable parameters. Let us now write the system
as follows

|ϕ〉 = Neiα
(
|ψ2〉+ Aeiβ|ψ2,⊥〉

)
, (20)

where ψ2,⊥ represents a linear combination of states perpendicular to ψ2. In the equation we now
find the parameter A, and the relative phase β.
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(7) The most general mixed density matrix ρ is the most general Hermitian operator with trace equal
to one. The number of independent real components for a 2× 2 Hermitian matrix is n2: 1

2
n(n− 1)

complex off-diagonal and n real diagonal elements. The total number of independent components
for a general density matrix for a mixed state is thus n2 − 1. In the case considered here n = 4 so
the number of independent parameters is 15.

In the case of a pure state, the density matrix is a projector on a state, hence the number of
independent parameters is equal to the number of observable parameters that characterize the state,
determined ad the previous question, namely 2n − 2, i.e. six in our case. This can equivalently
determined as a number of idependent components for a hermitian matrix with a single nonvanishing
eigenvalue, which is 2n− 1, with the normalization condition providing and extra constraint, which
gives again 2n− 2.

(8) Two observables are compatible if their operators posses a common eigenbasis. In this case |ψ2〉 is
an eigenstate of O1, but not of O2. This can be seen by considering

O2|ψ2〉 = |ψ1〉〈ψ1 | ψ2〉 6= λ|ψ2〉, (21)

where λ is a constant. Thus O1 and O2 are not compatible.

(9) The time dependent system |1, t〉, for which at t = 0 we have |1, 0〉 = |1〉, is

|1, t〉 = e−iHt/~|1〉. (22)

Thus the probability of finding the system in state |2〉 at time t = T is 0 since

〈1 | eiHT/~ | 2〉 = 〈1 | 2〉 = 0, (23)

as a result of |2〉 being orthogonal to ψ2 and thus corresponding to an eigenvalue of 0 of the Hamil-
tonian.

The probability of finding the system in state |3〉 at time t = T on the other hand, does not vanish.
Let us define a state orthogonal to ψ2:

ψ⊥ =
1√
2

[−i|1〉+ |3〉], (24)

which allows us to rewrite |3〉 as

|3〉 =
1√
2

[|ψ2〉+ |ψ⊥〉] . (25)

Using this we are able to determine the probability of finding the state |3〉 at time t = T :∣∣〈1 | eiHT/~ | 3〉∣∣2 =
1

2

∣∣〈1 | eiHT/~ | ψ2〉+ 〈1 | eiHT/~ | ψ⊥〉
∣∣2 , (26)

=
1

2

∣∣〈1 | eiET/~ | ψ2〉+ 〈1 | ψ⊥〉
∣∣2 , (27)

=
1

2

∣∣∣∣ i√2
eiET/~〈1 | 1〉 − i√

2
〈1 | 1〉

∣∣∣∣2 , (28)

=
1

4

(
eiET/~1 − 1

) (
e−iET/~ − 1

)
, (29)

=
1

2

(
1− cos

ET

~

)
= sin2 ET

2~
. (30)
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(10) The operator associated with the observable O3 can be written as

O3 = |1〉〈1| − |3〉〈3|, (31)

which we recognise as the Pauli matrix σ3 (Eq. 3.133 from the lecture notes) in |1〉, |3〉 space.

With O3 time independent, the Heisenberg equation of motion in |1〉, |3〉 space reads

dOH
3

dt
=

1

i~
[OH

3 , H
H ] =

E

i~
[OH

3 , O
H
1 ] =

E

2i~
[OH

3 , I− σH2 ] = − E

2i~
[OH

3 , σ
H
2 ] =

E

~
σH1 , (32)

where σ1 and σ2 are the Pauli matrices given in eq. 3.131 and eq. 3.132 of the lecture notes and the
superscript H makes explicit that the operators are in the Heisenberg picture.

(11) The operator O3 in the Heisenberg picture is

O3(t) = eiHt/~O3e
−iHt/~, (33)

where we can write the exponentiated Hamiltonian as

eiHt/~ = eiEO1t/~ = eiE(I−σ2)t/2~ = eiEt/2~e−iEσ2t/2~. (34)

that σ2 is a Pauli matrix, and thus we have that σ2
2 = I, which we can use to work out the exponential:

e−iEσ2t/2~ =
∑
n∈even

(iEt/2~)n

n!
I−

∑
n∈odd

(iEt/2~)n

n!
σ2, (35)

= cosh(iEt/2~)I− sinh(iEt/2~)σ2. (36)

The operator O3(t) is now found to be

O3(t) = (cI− isσ2)σ3(cI + isσ2) = c2σ3 + isc[σ3, σ2] + s2σ2σ3σ2 = c2σ3 + 2csσ1 − s2σ3, (37)

where for convenience of notation we used c = cos(Et/2~) and s = sin(Et/2~).

Finally for we have that O3(t) in |1〉, |3〉 space in matrix form is

O3(t) =

(
cos2(Et/2~)− sin2(Et/2~) 2 cos(Et/2~) sin(Et/2~)

2 cos(Et/2~) sin(Et/2~) − cos2(Et/2~) + sin2(Et/2~)

)
, (38)

=

(
cos(Et/~) sin(Et/~)
sin(Et/~) − cos(Et/~)

)
. (39)

We can calculate the eigenvalues to find λ± = ±1, with corresponding eigenvectors

|ψ〉+ = cos(Et/~)|1〉+ sin(Et/~)|3〉, (40)

|ψ〉− = sin(Et/~)|1〉 − cos(Et/~)|3〉. (41)

As an alternative approach to this problem, one could have started at equation Eq. (33) and used
Baker-Campbell-Hausdorff, or write H in bra-ket notation to evaluate the expression at once, thereby
omitting working out the product of the separate matrices.
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