PROVA IN ITINERE DI FISICA QUANTISTICA

22 giugno 2020

Traccia di soluzione

(1) Upon performing an energy measurement the wave function of the system collapses into one of the two energy eigenstates $|1\rangle$ and $|2\rangle$ of which the state $|\psi\rangle$ is a superposition. The possible outcomes of the measurements are respectively E_{1} with probability $\frac{1}{3}$ and E_{1} with probability $\frac{2}{3}$, with

$$
\begin{equation*}
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{8 m a^{2}} . \tag{1}
\end{equation*}
$$

Upon a momentum measurement, the wave function collapse into a momentum eigenstate. Each energy eigenstate is the superposition of two momentum eigenstates with values

$$
\begin{equation*}
p_{n}= \pm \hbar \frac{n \pi}{2 a}, \tag{2}
\end{equation*}
$$

where the probability of finding each of the eigenvalues (positive or negative) upon performing a measurement of the momentum are equal. Hence the possible outcomes of the momentum measurements will be $\pm p_{1}$ each with probability $\frac{1}{6}$ and $\pm p_{2}$ each with probability $\frac{2}{6}$, with p_{i} given by Eq. (2)
(2) Recall that in the position basis the wave function is given by

$$
\langle x \mid n\rangle=\left\{\begin{array}{l}
\frac{1}{\sqrt{a}} \sin \left(k_{n} x\right) \text { for even } n \tag{3}\\
\frac{1}{\sqrt{a}} \cos \left(k_{n} x\right) \text { for odd } n
\end{array},\right.
$$

where

$$
\begin{equation*}
k_{n}=\frac{n \pi}{2 a} . \tag{4}
\end{equation*}
$$

The expectation value of the position is

$$
\begin{align*}
\langle\psi| x|\psi\rangle & =\frac{1}{2}\langle 1| x|1\rangle+\frac{2}{3}\langle 2| x|2\rangle+i \frac{\sqrt{2}}{3}\langle 1| x|2\rangle-i \frac{\sqrt{2}}{3}\langle 2| x|1\rangle, \tag{5}\\
& =\frac{1}{2}\langle 1| x|1\rangle+\frac{2}{3}\langle 2| x|2\rangle=0 \tag{6}
\end{align*}
$$

where in the first step we made use of the fact that $\langle 1| x|2\rangle=\langle 2| x|1\rangle$. The two terms in (6) vanish because they are integrals over x of x times sine or cosine squared, so they are the integral of an odd function on an even domain.

The expectation value of the momentum is

$$
\begin{equation*}
\langle\psi| p|\psi\rangle=\frac{1}{3}(\langle 1| p|1\rangle+2\langle 2| p|2\rangle+i \sqrt{2}\langle 1| p|2\rangle-i \sqrt{2}\langle 2| p|1\rangle) . \tag{7}
\end{equation*}
$$

In the coordinate basis the momentum operator acts as $\langle x| p|\psi\rangle=-i \hbar \frac{\partial}{\partial x} \psi(x)$. Remembering (3) we see that the diagonal terms vanish because they are again the integral of an odd function on an even domain. The off-diagonal terms are

$$
\begin{equation*}
\langle 1| p|2\rangle=\int_{-a}^{a} \frac{1}{\sqrt{a}} \cos \left(\frac{\pi x}{2 a}\right)\left(-i \hbar \frac{\partial}{\partial x}\right) \frac{1}{\sqrt{a}} \sin \left(\frac{\pi x}{a}\right)=-i \frac{4 \hbar}{3 a} \tag{8}
\end{equation*}
$$

where after taking the derivative the integral is given on the exam sheet; note that $\langle 1| p|2\rangle=\langle 2| p|1\rangle^{*}$. Using this, and plugging it into (7), we find

$$
\begin{equation*}
\langle\psi| p|\psi\rangle=\frac{8 \sqrt{2} \hbar}{9 a} \tag{9}
\end{equation*}
$$

The calculation of the expectation value of the energy is straightforward. Given that $|\psi\rangle$ is a superposition of energy eigenstates with eigenvalues (1), we find

$$
\begin{equation*}
\langle\psi| H_{0}|\psi\rangle=\frac{1}{3} E_{1}+\frac{2}{3} E_{2}=\frac{1}{3}(1+2 * 4) \frac{\pi^{2} \hbar^{2}}{8 m a^{2}}=\frac{3 \pi^{2} \hbar^{2}}{8 m a^{2}} . \tag{10}
\end{equation*}
$$

(3) The time evolution of the state $|\psi\rangle$ as governed by the Hamiltonian H_{0} can be explicitly written as

$$
\begin{equation*}
|\psi(t)\rangle=e^{-\frac{i}{\hbar} H_{0} t}|\psi\rangle=\frac{1}{\sqrt{3}} e^{-\frac{i}{\hbar} E_{1} t}|1\rangle+i \sqrt{\frac{2}{3}} e^{-\frac{i}{\hbar} E_{2} t}|2\rangle . \tag{11}
\end{equation*}
$$

The time-dependent expectation value of the position is $\langle\psi(t)| x|\psi(t)\rangle$, where the diagonal terms vanish as a result of (11) and (6). By explicitly writing the off-diagonal terms, one finds

$$
\begin{align*}
\langle\psi(t)| x|\psi(t)\rangle & =i \frac{\sqrt{2}}{3} e^{-\frac{i}{\hbar}\left(E_{2}-E_{1}\right) t}\langle 1| x|2\rangle-i \frac{\sqrt{2}}{3} e^{\frac{i}{\hbar}\left(E_{2}-E_{1}\right) t}\langle 1| x|2\rangle \tag{12}\\
& =\frac{2 \sqrt{2}}{3} \sin \left(\left(E_{2}-E_{1}\right) t / \hbar\right)\langle 1| x|2\rangle \tag{13}\\
& =\frac{2 \sqrt{2}}{3} \sin (\omega t)\langle 1| x|2\rangle \tag{14}
\end{align*}
$$

where we again used $\langle 1| x|2\rangle=\langle 2| x|1\rangle^{*},\langle 1| x|2\rangle$ can be calculated using (3) and one of the integrals given on the exam sheet, and

$$
\begin{equation*}
\hbar \omega=E_{2}-E_{1}=\frac{3}{8} \frac{\hbar^{2} \pi^{2}}{m a^{2}} \tag{15}
\end{equation*}
$$

We have $\langle 1| x|2\rangle=\frac{32 a}{9 \pi^{2}}$, which we can plug into (14), resulting in

$$
\begin{equation*}
\langle\psi(t)| x|\psi(t)\rangle=\frac{64 \sqrt{2}}{27 \pi^{2}} a \sin (\omega t) \tag{16}
\end{equation*}
$$

The expectation value of position depends on time. This is a consequence of the fact that the Hamiltonian does not commute with the position operator, $[H, \hat{x}] \neq 0$, hence the position is not conserved.

The expectation value of the energy is not time dependent, and hence equal to what we found before in (10). This is a consequence of the fact that the Hamiltonian describing the time evolution of the system is time-independent: the system is invariant upon time translations and thus energy is conserved.
(4) We note that the potential is given by

$$
\begin{equation*}
\langle x| V(\hat{x})\left|x^{\prime}\right\rangle=V(x) \delta\left(x-x^{\prime}\right) \tag{17}
\end{equation*}
$$

but clearly

$$
\begin{equation*}
V_{1}(x)=V_{0}(x-a) \tag{18}
\end{equation*}
$$

(for example $\left.V_{1}(2 a)=V_{0}(a)\right)$. So

$$
\begin{equation*}
V_{1}(x) \delta\left(x-x^{\prime}\right)=\langle x| V_{1}(\hat{x})\left|x^{\prime}\right\rangle=V_{0}(x-a) \delta\left(x-x^{\prime}\right)=\langle x-a| V_{0}(\hat{x})\left|x^{\prime}-a\right\rangle=\langle x| T_{a}^{-1} V_{0}(\hat{x}) T_{a}\left|x^{\prime}\right\rangle \tag{19}
\end{equation*}
$$

(see Eq. (4.56) of the textbook). Therefore the potential $V_{1}(\hat{x})$ can be obtained from $V_{0}(\hat{x})$ by the translation

$$
\begin{equation*}
H_{1}=T_{a}^{-1} H_{0} T_{a} \tag{20}
\end{equation*}
$$

where the translation operator is

$$
\begin{equation*}
T_{\delta}=e^{\frac{i}{\hbar} \delta \hat{p}} \tag{21}
\end{equation*}
$$

Next we can use the unitarity of T to find

$$
\begin{equation*}
T_{a} H_{1} T_{a}^{-1}|n\rangle=H_{0}|n\rangle=E_{n}|n\rangle \quad \Rightarrow \quad H_{1} T_{a}^{-1}|n\rangle=E_{n} T_{a}^{-1}|n\rangle . \tag{22}
\end{equation*}
$$

It follows that the operators H_{0} and H_{1} are unitarily equivalent, they have the same eigenvalues, and their eigenvectors are related by

$$
\begin{equation*}
\left|n^{(1)}\right\rangle=T_{a}^{-1}\left|n^{(0)}\right\rangle \tag{23}
\end{equation*}
$$

where by $\left|n^{(i)}\right\rangle$ we denote the eigenvectors of H_{i} :

$$
\begin{equation*}
H_{i}\left|n^{(i)}\right\rangle=E_{n}\left|n^{(i)}\right\rangle, \quad i=1,2 . \tag{24}
\end{equation*}
$$

Hence in the coordinate basis we have

$$
\begin{equation*}
\psi_{n}^{(1)}(x)=\left\langle x \mid n^{(1)}\right\rangle=\langle x| T_{a}^{-1}\left|n^{(0)}\right\rangle=\psi_{n}^{(0)}(x-a) . \tag{25}
\end{equation*}
$$

(5) Call $|\chi\rangle$ the new state in which we have to calculate expectation values. Equation (23) implies that it is found from the state $|\psi\rangle$ Eq. (3) of the assigment using

$$
\begin{equation*}
|\chi\rangle=T_{a}^{-1}|\psi\rangle . \tag{26}
\end{equation*}
$$

Equation (21) immediately implies that $\left[p, T_{a}\right]=0$, from which it follows that

$$
\begin{equation*}
\langle\chi| \hat{p}|\chi\rangle=\langle\psi| T_{a} \hat{p} T_{a}^{-1}|\psi\rangle=\langle\psi| \hat{p}|\psi\rangle \tag{27}
\end{equation*}
$$

so the expectation value of the momentum is unchanged, and it is still given by Eq. (9).
From (24) we know that the energy eigenvalues are unchanged as a result of the translation. This means that the expectation value of the energy is also unchanged, and it is still given Eq. (10). More formally

$$
\begin{equation*}
\langle\chi| H_{1}|\chi\rangle=\langle\psi| T_{a} H_{1} T_{a}^{-1}|\psi\rangle=\langle\psi| H_{0}|\psi\rangle . \tag{28}
\end{equation*}
$$

Finally, the expectation value of x is

$$
\begin{equation*}
\langle\chi| \hat{x}|\chi\rangle=\langle\psi| T_{a} \hat{x} T_{a}^{-1}|\psi\rangle=\langle\psi| \hat{x}+a|\psi\rangle=a, \tag{29}
\end{equation*}
$$

where we have used the action of the translation on the operator \hat{x} (Eq. (4.80) of the textbook) and, in the last step, Eq. (6).

