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Traccia di soluzione

(1) Upon performing an energy measurement the wave function of the system collapses into one of the
two energy eigenstates |1〉 and |2〉 of which the state |ψ〉 is a superposition. The possible outcomes
of the measurements are respectively E1 with probability 1

3
and E1 with probability 2

3
, with

En =
~2k2n
2m

=
n2π2~2

8ma2
. (1)

Upon a momentum measurement, the wave function collapse into a momentum eigenstate. Each
energy eigenstate is the superposition of two momentum eigenstates with values

pn = ±~nπ
2a
, (2)

where the probability of finding each of the eigenvalues (positive or negative) upon performing a
measurement of the momentum are equal. Hence the possible outcomes of the momentum mea-
surements will be ±p1 each with probability 1

6
and ±p2 each with probability 2

6
, with pi given by

Eq. (2)

(2) Recall that in the position basis the wave function is given by

〈x|n〉 =

{
1√
a

sin (knx) for even n
1√
a

cos (knx) for odd n
, (3)

where
kn =

nπ

2a
. (4)

The expectation value of the position is

〈ψ|x|ψ〉 =
1

2
〈1|x|1〉+

2

3
〈2|x|2〉+ i

√
2

3
〈1|x|2〉 − i

√
2

3
〈2|x|1〉, (5)

=
1

2
〈1|x|1〉+

2

3
〈2|x|2〉 = 0 (6)

where in the first step we made use of the fact that 〈1|x|2〉 = 〈2|x|1〉. The two terms in (6) vanish
because they are integrals over x of x times sine or cosine squared, so they are the integral of an odd
function on an even domain.

The expectation value of the momentum is

〈ψ|p|ψ〉 =
1

3

(
〈1|p|1〉+ 2〈2|p|2〉+ i

√
2〈1|p|2〉 − i

√
2〈2|p|1〉

)
. (7)

In the coordinate basis the momentum operator acts as 〈x|p|ψ〉 = −i~ ∂
∂x
ψ(x). Remembering (3) we

see that the diagonal terms vanish because they are again the integral of an odd function on an even
domain. The off-diagonal terms are

〈1|p|2〉 =

∫ a

−a

1√
a

cos
(πx

2a

)(
−i~ ∂

∂x

)
1√
a

sin
(πx
a

)
= −i4~

3a
(8)
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where after taking the derivative the integral is given on the exam sheet; note that 〈1|p|2〉 = 〈2|p|1〉∗.
Using this, and plugging it into (7), we find

〈ψ|p|ψ〉 =
8
√

2~
9a

. (9)

The calculation of the expectation value of the energy is straightforward. Given that |ψ〉 is a
superposition of energy eigenstates with eigenvalues (1), we find

〈ψ|H0|ψ〉 =
1

3
E1 +

2

3
E2 =

1

3
(1 + 2 ∗ 4)

π2~2

8ma2
=

3π2~2

8ma2
. (10)

(3) The time evolution of the state |ψ〉 as governed by the Hamiltonian H0 can be explicitly written as

|ψ(t)〉 = e−
i
~H0t|ψ〉 =

1√
3
e−

i
~E1t|1〉+ i

√
2

3
e−

i
~E2t|2〉. (11)

The time-dependent expectation value of the position is 〈ψ(t)|x|ψ(t)〉, where the diagonal terms
vanish as a result of (11) and (6). By explicitly writing the off-diagonal terms, one finds

〈ψ(t)|x|ψ(t)〉 = i

√
2

3
e−

i
~ (E2−E1)t〈1|x|2〉 − i

√
2

3
e

i
~ (E2−E1)t〈1|x|2〉 (12)

=
2
√

2

3
sin ((E2 − E1)t/~)〈1|x|2〉 (13)

=
2
√

2

3
sin (ωt)〈1|x|2〉, (14)

where we again used 〈1|x|2〉 = 〈2|x|1〉∗, 〈1|x|2〉 can be calculated using (3) and one of the integrals
given on the exam sheet, and

~ω = E2 − E1 =
3

8

~2π2

ma2
. (15)

We have 〈1|x|2〉 = 32a
9π2 , which we can plug into (14), resulting in

〈ψ(t)|x|ψ(t)〉 =
64
√

2

27π2
a sin (ωt). (16)

The expectation value of position depends on time. This is a consequence of the fact that the
Hamiltonian does not commute with the position operator, [H, x̂] 6= 0, hence the position is not
conserved.

The expectation value of the energy is not time dependent, and hence equal to what we found before
in (10). This is a consequence of the fact that the Hamiltonian describing the time evolution of
the system is time-independent: the system is invariant upon time translations and thus energy is
conserved.

(4) We note that the potential is given by

〈x|V (x̂)|x′〉 = V (x)δ(x− x′), (17)

but clearly
V1(x) = V0(x− a) (18)

(for example V1(2a) = V0(a)). So

V1(x)δ(x− x′) = 〈x|V1(x̂)|x′〉 = V0(x− a)δ(x− x′) = 〈x− a|V0(x̂)|x′− a〉 = 〈x|T−1a V0(x̂)Ta|x′〉 (19)
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(see Eq. (4.56) of the textbook). Therefore the potential V1(x̂) can be obtained from V0(x̂) by the
translation

H1 = T−1a H0Ta. (20)

where the translation operator is

Tδ = e
i
~ δp̂. (21)

Next we can use the unitarity of T to find

TaH1T
−1
a |n〉 = H0|n〉 = En|n〉 ⇒ H1T

−1
a |n〉 = EnT

−1
a |n〉. (22)

It follows that the operators H0 and H1 are unitarily equivalent, they have the same eigenvalues,
and their eigenvectors are related by

|n(1)〉 = T−1a |n(0)〉 (23)

where by |n(i)〉 we denote the eigenvectors of Hi:

Hi|n(i)〉 = En|n(i)〉, i = 1, 2. (24)

Hence in the coordinate basis we have

ψ(1)
n (x) = 〈x|n(1)〉 = 〈x|T−1a |n(0)〉 = ψ(0)

n (x− a). (25)

(5) Call |χ〉 the new state in which we have to calculate expectation values. Equation (23) implies that
it is found from the state |ψ〉 Eq. (3) of the assigment using

|χ〉 = T−1a |ψ〉. (26)

Equation (21) immediately implies that [p, Ta] = 0, from which it follows that

〈χ|p̂|χ〉 = 〈ψ|Tap̂T−1a |ψ〉 = 〈ψ|p̂|ψ〉, (27)

so the expectation value of the momentum is unchanged, and it is still given by Eq. (9).

From (24) we know that the energy eigenvalues are unchanged as a result of the translation. This
means that the expectation value of the energy is also unchanged, and it is still given Eq. (10). More
formally

〈χ|H1|χ〉 = 〈ψ|TaH1T
−1
a |ψ〉 = 〈ψ|H0|ψ〉. (28)

Finally, the expectation value of x is

〈χ|x̂|χ〉 = 〈ψ|Tax̂T−1a |ψ〉 = 〈ψ|x̂+ a|ψ〉 = a, (29)

where we have used the action of the translation on the operator x̂ (Eq. (4.80) of the textbook) and,
in the last step, Eq. (6).
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