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Traccia di soluzione

(1) Starting from the Hamiltonian

H1 =
p2

2m
+ λx (1)

the Heisenberg equations of motion are

dx

dt
=
i

~
[H, x] =

i

~
1

2m

[
p2, x

]
=

p

m
(2)

dp

dt
=
i

~
[H, p] =

i

~
λ[x, p] = −λ, (3)

dV

dt
=
i

~
[H, λx] =

i

~
λ

2m

[
p2, x

]
=

λ

m
p (4)

dT

dt
=
i

~
[H,

p2

2m
] =

i

~
λ

2m
[x, p2] = − λ

m
p. (5)

Equation (3) shows that momentum is not conserved. This is due to the fact that the potential is
not invariant upon space translations x→ x+ δ, i.e. the Hamiltonian does not commpute with p.

Equations (4-5) imply that d
dt

(T + V ) = d
dt
H = 0, i.e. the energy is conserved. This is due to the

fact that the potential is invariant upon time translations t → t + δ, so the hamiltonian commutes
with the time-evolution operator.

(2) The time dependence of the position and momentum operators is

p(t) = p(t0)− λ(t− t0), (6)

x(t) = x(t0)−
1

2m
λ(t− t0)2 +

p(t0)

m
(t− t0), (7)

where both (2) and (6) are used to obtain (7). The time dependence of the expectation values is
thus

〈p(t)〉 = 〈p(0)− λt〉 = p0 − λt, (8)

〈x(t)〉 = 〈x(0)− 1

2m
λt2 +

p(0)

m
t〉 = x0 −

1

2m
λt2 +

p0
m
t. (9)

The calculation of the uncertainties is also relatively straightforward, if a bit more laborious. For
the uncertainty of the position we find

∆2x(t) = 〈x2(t)〉 − 〈x(t)〉2 (10)

= 〈x2(0)〉 − x20 +
t2

m2

(
〈p2(0)〉 − p20

)
+

t

m
(〈x(0)p(0) + p(x)x(0)〉 − 2x0p0) (11)

= ∆2x(0) +
t2

m2
∆2p(0) +

t

m
〈∆x(0)∆p(0) + ∆p(0)∆x(0)〉 , (12)

where to get from (10) to (11) equations (7) and (9) are plugged in (10) after which the squares are
expanded and many of the terms cancel.
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Since we are told to assume at t = 0 the special case of a Gaussian wave packet this expres-
sion can be further simplified, by recalling that the minimal uncertainty condition requires (recall
Eqs. (6.53),(6.91) of the textbook)

〈∆x(0)∆p(0) + ∆p(0)∆x(0)〉 = 0. (13)

This can also be verified by explicit computation: assuming for simplicity and without loss of gen-
erality x0 = p0 = 0 we get

x(0)p(0) + p(0)x(0) = 2x(0)p(0)− i~, (14)

and

〈ψ|x̂p̂|ψ〉 = −i~
√
α

π

∫
R

dxx (−αx) e−αx
2

(15)

= i~α
√
α

π

∫
R

dxx2e−αx
2

(16)

= i~/2 (17)

so that indeed we get Eq. (13).

Using this result we thus get

∆2x(t) = ∆2x(0) +
t2

m2
∆2p(0). (18)

For the uncertainty of momentum we find

∆2p(t) = 〈p2(t)〉 − 〈p(t)〉2 (19)

= 〈p2(0)〉 − p20 (20)

= ∆2p(0), (21)

where similar to before we obtained (19) from (20) by plugging in equations (6) and (8) and expanding
the squares, which leads to cancellation of the time dependent terms.

We can finally express the uncertainties Eqs. (24-20) in terms of σ0, noting that for a minimum
uncertainty state

∆2p(0) =
~2

4

1

∆2x(0)
=

~2

4

1

σ
. (22)

We get finally

∆2p(t) =
~2

4

1

σ
, (23)

∆2x(t) = ∆2x(0) +
t2

m2

~2

4

1

σ
. (24)

(3) The eigenvalue equation is
∂2ψ(x)

∂x2
=

2m

~
(V (x)− E)ψ(x), (25)

so the sign of V −E plays an important role in determining the qualitative properties of the solutions
as asked in this exercise.

The eigenfunctions of H1 cannot be normalized in the proper sense. This is due to the fact that
the potential satisfies limx→−∞ V (x) = −∞ and as a result the energy is greater than the potential
in this limit. The wave function therefore always has an oscillating trend in this limit (it isn’t
bound) and therefore the normalization integral diverges. The spectrum is consequently continuous
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as there are no constraints on E. The spectrum is however not degenerate. We can understand
this as a consequence of the fact that limx→∞ V (x) > E for each E. Therefore, in x → ∞ the
energy eigenfunction is exponential, but one of its exponential solutions diverges and is therefore not
acceptable. Hence there is a unique solution for every E.

The potential V2 = λ|x| of the Hamiltonian H2 is symmetric around x = 0 and has a unique minimum
at this point. It furthermore satisfies limx→±∞ V (x) > E, meaning the eigenstates are bounded at
both positive and negative infinity and hence are normalizable in the proper sense. This implies that
the spectrum is not degenerate, given that in one dimension a normalizable spectrum is necessarily
not degenerate. The spectrum is discrete as a consequence of the matching conditions at the origin.

(4) For the Hamiltonian H1, we write the eigenvalue equation in the momentum basis as

〈p|Ĥ|ψ〉 = E〈p|ψ〉. (26)

Recalling that 〈p|x̂|ψ〉 = i~(∂/∂p)ψ(p), we obtain

∂

∂p
ψE(p) = − 1

i~λ

(
p2

2m
− E

)
ψE(p), (27)

from which we can immediately find the solution to be

ψE(p) = N exp

[
i

~λ

(
p3

6m
− Ep

)]
, (28)

where N is the normalization coefficient.

The solutions in position space can be written in terms of that in momentum space through a Fourier
transform:

ψ
(1)
E (x) =

∫
dp〈x|p〉〈p|ψ〉 =

1√
2π~

∫
dpeipx/~ψE(p). (29)

For the Hamiltonian H2, we divide the space in the two regions, region I, x < 0 and region II, x > 0.
In region II the Hamiltonian H2 = H1 and the solution is given by

ψII(x) = ψ
(1)
E (x) x > 0. (30)

with ψ
(1)
E (x) given by Eq. (29). In region I, the hamiltonian is given by

H ′ =
p2

2m
− λx; x < 0. (31)

It follows that in this region the wave function can be obtained by letting λ → −λ in Eqs.(28-30).
It then immediately follows that

ψI(x) = kψII(−x); x < 0. (32)

where the coefficient of proportionality k is determined by the matching conditions in the origin.
Putting Eqs. (30-32) together we get that in this case the energy eigenfunction is given by

ψ
(2)
E (x)(x) = ψ

(1)
E (x)(|x|) (33)

in terms of the energy eigenfunction ψ
(1)
E (x) Eq. (29) of the Hamiltonian H1. Note that now E is

quantized due to matching conditions at the origin, to be discussed at the next point.

3



(5) Concerning the Hamiltonian H1, in exercise (3) it was discussed that the wave function corresponding
to the Hamiltonian H1 cannot be normalized in a proper sense. It is however possible to normalize
the eigenfunctions in an improper sense by imposing 〈ψ|ψ′〉 = δ(E − E ′):

〈ψ|ψ′〉 = |N |2
∫
R

dp exp

[
i

~λ
(E − E ′)

]
= |N |22πδ

(
E − E ′

~λ

)
= |N |22π~λδ (E − E ′) , (34)

from which we see that the normalization coefficient is

N =
1√

2π~λ
. (35)

Concerning the Hamiltonian H2, it should be noted that even though the potential has a discontinu-
ous derivative in x = 0, the potential itself is continuous. This implies that the second derivative of
the energy eigenfunctions is continuous in the origin, and thus the first derivative and the functions
are also continuous. It follows that the matching conditions are

ψI(0) = ψII(0), (36)

ψI
′
(0) = ψII

′
(0). (37)

Note that these conditions can only be simultaneously satisfied together with Eqs. (28-29) by re-
quiring that either ψI(0) = ψII(0) = 0, or ψI

′
(0) = ψII

′
(0), so that we have that k in Eq. (32) is

respectively given by k = −1 (first case, anstisymmetric solutions) or k = +1 (second case, anstisym-
metric solutions). These conditions, together with Eq. (28-29) , lead to the quantization of the values
of E.
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