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We consider a system of two particles in one dimension, whose dynamics are described by the Hamil-
tonian

H = ω
(
a†1a1 + a†2a2

)
+ λ

(
a†1a2 + a†2a1

)
+ µ~s1 · ~s2 = Hω +Hλ +Hµ, (1)

where the operators a†i and ai satisfy the commutation relations[
a†i , aj

]
= δij;

[
a†i , a

†
j

]
= [ai, aj] = 0. (2)

(1) Here we consider the case where λ = µ = 0, thus the Hamiltonian reduces to

H = Hω = ω
(
a†1a1 + a†2a2

)
. (3)

The eigenvalues of Hi, with i ∈ {1, 2} are found by noting that ai, a
†
i satisfy the same commutation

relations as the creation and annihilation operators for the one-dimensional harmonic oscillator.
Therefore, Ni = a†iai is the number operator whise spectrum are the non-negative integers so

Hi|ni〉 = ωa†iai|ni〉 = ωni|n1〉, (4)

and the eigenvalues are thus
Ei = ωni. (5)

From this it follows that the eigenvalues and aigenstates of the total Hamiltonian Hω are

Hω|n1, n2〉 = (H1 +H2) |n1, n2〉 = ω (n1 + n2) |n1, n2〉, (6)

where we have defined
|n1, n2〉 = |n1〉 ⊗ |n2〉. (7)

The spectrum is thus
Eω
n = ω (n1 + n2) = ωn, (8)

where n = n1 + n2.

(2) The degeneracy g for the case with spin-1
2

particles is g = 4(n+ 1), and for the spin-1 particles it is
g = 9(n + 1): n + 1 is the number of pairs of non-nehative integers whose sum is equal to n, while
the factors 4 and 9 correspond to the spin degeneracies of the two particles. Indeed, for each spin-1

2

particle there are two spin states, and for each spin-1 there are three.

(3) Here we consider the Hamiltonian of Eq. (1) with λ = 0 but µ 6= 0, for non-identical particles.

Let us consider
Hµ = µ~s1 · ~s2, (9)

which we can write in a basis of the eigenstates of the operators s2, s21 and s22, where ~s = ~s1 + ~s2. In
this basis the Hamiltonian becomes

Hµ =
µ

2

(
s2 − s21 − s22

)
. (10)
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For spin-1
2

particles the eigenvalues are

Eµ
s =

µ

2
~2(s(s+ 1)− 3

2
), (11)

where we can have s = 0 or s = 1, in which cases the eigenvalues are

En,s=0 = Eω
n −

3

4
~2µ, (12)

En,s=1 = Eω
n +

1

4
~2µ. (13)

For spin-1 particles the eigenvalues are respectively

Eµ
s =

µ

2
~2(s(s+ 1)− 4), (14)

where in this case we can have s = 0, s = 1, or s = 2, which means the eigenvalues are

En,s=0 = Eω
n − 2~2µ, (15)

En,s=1 = Eω
n − ~2µ, (16)

En,s=2 = Eω
n + ~2µ. (17)

(4) Here we remember the spin multiplicity 2s+ 1 discussed in exercise 1.

For the spin-1
2

case the degeneracies are

g = n+ 1 for En,s=0,

g = 3(n+ 1) for En,s=1.

Therefore, the spin interaction splits the 4(n + 1) degenerate states correponding to each value of
Eω
n found in question (2) into two groups of (1 + 3)(n+ 1) states.

For the spin-1 case the degeneracies are

g = n+ 1 for En,s=0,

g = 3(n+ 1) for En,s=1,

g = 5(n+ 1) for En,s=2.

Therefore, the spin interaction splits the 9(n + 1) degenerate states correponding to each value of
Eω
n found in question (2) into three group of (1 + 3 + 5)(n+ 1) states.

(5) Here we still consider the Hamiltonian of Eq. (1) with λ = 0 and µ 6= 0, and we are given that
|ω| � |µ|~2. Note that ω is assumed positive (otherwise theHamiltonian would notbhave a ground
state), while µ is not necessarily positive. The condition means that the spacing of the energy levels
due to spin is a fine structure on top of the main spacing due to the term proportional to ω. Now the
particles are identical and thus the wave function must be symmetric for Bosons and antisymmetric
for Fermions. For the cases below, the ket of the system is written in terms of the direct product
kets Eq. (7). The spin state is included in the answer in order to keep track of (anti)-symmetry, but
one could also have omitted it since it is not required for the exercise. We write the states as |n, S〉
where n = n1 + n2 and S is the value of the total spin.

First we consider the case of spin-1
2

particles, for which the wave function must be antisymmetric.
Here the energy is given by

En,s = ωn+
µ

2
~2(s(s+ 1)− 3

2
). (18)
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The ground state is
|0, 0〉 = |0, 0〉 ⊗ |0〉. (19)

This state is non-degenerate. The ground state energy is

E0,0 = −3

4
~2µ. (20)

If µ > 0, the first excited state is

|1, 0〉 =
1√
2

(|0, 1〉+ |1, 0〉)⊗ |0〉. (21)

The state is non-degenerate, and energy of this state is

E1,0 = ω − 3

4
~2µ. (22)

The second excited state is

|1, 1〉 =
1√
2

(|0, 1〉 − |1, 0〉)⊗ |1〉. (23)

The degeneracy is 3, and energy of this state is

E1,1 = ω +
1

4
~2µ. (24)

If µ < 0 the ordering of these two states is reversed.

Now we consider the case of spin-1 particles, for which the wave function must be symmetric. Here
the energy is given by

En,s = ωn+
µ

2
~2(s(s+ 1)− 4). (25)

If µ > 0, the ground state is
|0, 0〉 = |0, 0〉 ⊗ |0〉, (26)

where we have used the hint and noticed that when composing two spin 1 the S = 0 state is
symmetric. This state is non-degenerate. The ground state energy is

E0,0 = −2~2µ. (27)

The first excited state is
|0, 2〉 = |0, 0〉 ⊗ |2〉. (28)

The degeneracy is 5. The energy is
E0,2 = ~2µ. (29)

Again, if µ < 0 the ordering of these two states is reversed.

The second excited state is

|1, 0〉 =
1√
2

(|0, 1〉+ |1, 0〉)⊗ |0〉. (30)

This state is non-degenerate. The energy is

E1,0 = ω − 2~2µ. (31)

Students who tacitly assumed µ > 0 are given full score on this question, those who realized that the
answer depends on the sign of µ get bonus points.
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(6) Here we consider a composition of three spin-1 particles, where each particle can be in one of three
possible spin states. This means that there are 33 = 27 possible states for this composition of
particles.

First, we can combine the first two particles after which we find a symmetric spin-2 state, an anti-
symmetric spin-1 state and a symmetric spin-0 state:

|2,m〉12 |1, {−1, 0, 1}〉3 , |1,m〉12 |1, {−1, 0, 1}〉3 , |0,m〉12 |1, {−1, 0, 1}〉3 .

Now we can also include the third particle in the combination, obtaining the states |s, sz, s12〉123:

|3, sz, 2〉123, |2, sz, 2〉123, |1, sz, 2〉123, |2, sz, 1〉123, |1, sz, 1〉123, |0, sz, 1〉123, |1, sz, 0〉123.

Thus eigenvalues with s = 3 have a degeneracy of 7, eigenvalues with s = 2 have a degeneracy of
2× 5 = 10, eigenvalues with s = 1 have a degeneracy of 3× 3 = 9, and the eigenvalue with s = 0 is
non-degenerate.

(7) The first excited level of the unperturbed Hamiltonian is twice degenerate, corresponding to the two
eigenstates Eq. (7) |10〉 and |01〉. In order to determine the perturbative corrections we compute
the expectation value of the perturbation in the degenerate subspace. We get (writing the bras as
〈n1n2|)

〈Hλ〉 =

(
〈10|Hλ|10〉 〈10|Hλ|01〉
〈01|Hλ|10〉 〈01|Hλ|01〉

)
=

(
0 1
1 0

)
= λσ1 (32)

where in the last step we have recognized the Pauli matrix σ1:

σ1 =

(
0 1
1 0

)
. (33)

Now let us diagonalize the matrix λσ1, such that D = M−1σ1M , where D is a diagonal matrix. In
doing so find the eigenvalues and corresponding eigenvectors. We find easily that the eigenvalues of
σ1 are ±1 and the diagonalization matrix is the orthogonal (unitary, real) matrix

M =
1√
2

(
1 −1
1 1

)
, (34)

which can be used to transform the basis of the operators or the eigenstates.

The eigenvectors of the perturbation are

|±〉 =
1√
2

(|1, 0〉 ± |0, 1〉) . (35)

and the eigenvalues are ±λ. Therefore, the correction to the eigenvalue of the first excited order is

Eλ
1,± = 〈±|Hλ|±〉 = λ〈±|a†1a2 + a†2a1|±〉 = ±λ. (36)

Taking into account this correction, the first excited state is no longer degenerate.

(8) Here we recognise that the contriobution proportional to λ to the Hamiltonian can be written as

Hλ = λ~a†σ1~a, (37)

where again σ1 is the Pauli matrix. We further note that upon a unitary transformation M of the
operators a the term proportional to ω in the Hamiltinoian H is unchanged, because

Hω = ωa†iai = ωa†iM
†
ii′Mi′iaj. (38)
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It follows that if we define

bi = Mijaj, (39)

and we choose M as the unitary matrix M Eq. (34) which diagonalizes the Pauli matrix σ1 we find

Hλ = λ~b†Mσ1M
†~b = λ

(
b†1b1 − b

†
2b2

)
(40)

and thus
H = ω

(
b†1b1 + b†2b2

)
+ λ

(
b†1b1 − b

†
2b2

)
, (41)

with the spectrum
En1,n2 = ω(n1 + n2) + λ(n1 − n2). (42)

which shows that the first order perturbative result for the first excited state is the same as the exact
result.

(9) Here we again consider H = Hω +Hλ. The ground state of this Hamiltonian is annihilated by both
the operators bi. But these are the linear combination Eq. (39) of the operators ai, so this is the
same as the ground state of the hamiltonian Hω. It follows that at time t = 0 the system is in the
state

a†1|00〉 = |10〉. (43)

This state can be written as a linear combination of the two states |±〉 Eq. (35), which are eigenstates
of the full hamiltonian H:

|1, 0〉 =
1√
2

(|+〉+ |−〉) . (44)

We thus get that the state of the system at time t is

|ψ, t〉 = e−
i
~Ht|1, 0〉, (45)

= e−
i
~ (ωI+λσ1)t

1√
2

(|+〉+ |−〉) , (46)

= e−
i
~ωt

1√
2

(
e−

i
~λt|+〉+ e

i
~λt|−〉

)
, (47)

= e−
i
h
ωt

(
cos

(
λ

~
t

)
|1, 0〉 − i sin

(
λ

~
t

)
|0, 1〉

)
. (48)

Thus the probability of finding the system in a state |φ〉 at time t = T is

P = |〈φ|ψ, T 〉|2 = |〈1, 0|ψ, T 〉|2 = sin2

(
λ

~
T

)
. (49)
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