QUANTUM MECHANICS II EXAM

25 January 2022
Answers sheet

Consider a system whose dynamics is described by the Hamiltonian

$$
\begin{equation*}
H_{0}=\frac{\kappa}{2 I}(\vec{L})^{2}+\hbar \vec{B} \cdot \vec{L} \tag{1}
\end{equation*}
$$

where $\vec{L}=\vec{x} \times \vec{p}$ are the angular momentum operators, I and κ are positive real constants, and \vec{B} is a three-dimensional vector with real components (not necessarily positive).
(1) In the case in which $\vec{B}=0$ the Hamiltonian Eq. (1) becomes proportional to the operator $(\vec{L})^{2}$ and thus the eigenstates are the angular momentum eigenfunctions $|l m\rangle$ with integer l satisfying $l \geq 0$ and $-l \leq m \leq l$. The eigenvalues are

$$
\begin{equation*}
E_{l}=\frac{\kappa}{2 I} \hbar^{2} l(l+1) . \tag{2}
\end{equation*}
$$

(2) Since the eigenvalues Eq. (2) do not depend on m, the degeneracy is $d=2 l+1$.
(3) Let us, without loss of generality, assume that \vec{B} points in the z direction. In this case the eigenvalues of Eq. (1) are found to be

$$
\begin{equation*}
E_{l m}=\frac{\kappa}{2 I} \hbar^{2} l(l+1)+\hbar^{2} m|\vec{B}| . \tag{3}
\end{equation*}
$$

In this case, the eigenvalues Eq. (3) are not independent of m and hence they are non-degenerate.
(4) The Heisenberg equations of motion of the angular momentum operator are:

$$
\begin{align*}
\frac{\mathrm{d} L_{j}}{\mathrm{~d} t}= & \frac{i}{\hbar}\left[H, L_{j}\right]=\frac{i}{\hbar}\left[\hbar B_{i} L_{i}, L_{j}\right] \tag{4}\\
& =-\hbar B_{i} \epsilon_{i j k} L_{k}=\hbar \epsilon_{j i k} B_{i} L_{k} \tag{5}
\end{align*}
$$

where we used the commutation relations of angular momentum $\left[L^{2}, L_{j}\right]=0$ and $\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k}$. In vector form Eq. (5) can be written as

$$
\begin{equation*}
\frac{\mathrm{d} \vec{L}}{\mathrm{~d} t}=\hbar \vec{B} \times \vec{L} \tag{6}
\end{equation*}
$$

(5) In the case where $\kappa=0$ the Heisenberg equations of motion of the position operator are:

$$
\begin{align*}
\frac{\mathrm{d} x_{l}}{\mathrm{~d} t} & =\frac{i}{\hbar}\left[H, x_{l}\right]=\frac{i}{\hbar}\left[\hbar B_{i} L_{i}, x_{l}\right]=i\left[B_{i} \epsilon_{i j k} x_{j} p_{k}, x_{l}\right] \tag{7}\\
& =i B_{i} \epsilon_{i j k}\left(x_{j}\left[p_{k}, x_{l}\right]+\left[x_{j}, x_{l}\right] p_{k}\right) \tag{8}\\
& =\hbar \epsilon_{i j l} B_{i} x_{j}, \tag{9}
\end{align*}
$$

where to get the third line we used that $\left[x_{i}, x_{j}\right]=0$ and $\left[x_{i}, p_{j}\right]=i \hbar \delta_{i j}$.
In vector form this can be written as

$$
\begin{equation*}
\frac{\mathrm{d} \vec{x}}{\mathrm{~d} t}=\hbar \vec{B} \times \vec{x} \tag{10}
\end{equation*}
$$

The case for the momentum operator can be found analogously:

$$
\begin{equation*}
\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=\hbar \vec{B} \times \vec{p} \tag{11}
\end{equation*}
$$

(6) See the complement 25 in the textbook.
(7) The correction of the first order perturbation at any energy level of the unperturbed Hamiltonian is

$$
\begin{equation*}
\Delta E_{1}=\epsilon \hbar|\vec{A}|\langle l, m| L_{x}|l, m\rangle=\frac{1}{2} \epsilon \hbar|\vec{A}|\langle l, m|\left(L_{+}+L_{-}\right)|l, m\rangle=0 \tag{12}
\end{equation*}
$$

where $L_{ \pm}=L_{x} \pm i L_{y}$.
(8) Because $\vec{B}=0$, we can diagonalize the Hamiltonian using the basis of eigenstates of J^{2}, J_{z}, S^{2}, and L^{2} :

$$
\begin{equation*}
H=H_{0}+\hbar \vec{\sigma} \cdot \vec{L}=H_{0}+2 \vec{S} \cdot \vec{L}=H_{0}+\left(\vec{J}^{2}-\vec{L}^{2}-\vec{S}^{2}\right) \tag{13}
\end{equation*}
$$

where $\vec{J}=\vec{L}+\vec{S}$ is the total angular momentum. The eigenvalues are

$$
\begin{align*}
E & =\frac{\kappa}{2 I} \hbar^{2} l(l+1)+\hbar^{2}(j(j+1)-l(l+1)-s(s+1)) \tag{14}\\
& \left.=\hbar^{2}\left[j(j+1)+\left(\frac{\kappa}{2 I}-1\right) l(l+1)-\frac{3}{4}\right)\right] . \tag{15}
\end{align*}
$$

If $l=0$ then $j=\frac{1}{2}$, if instead $l \geq 1$ then $j=l-\frac{1}{2}$ or $j=l+\frac{1}{2}$. This however does not lead to degeneracy because of the factor multiplying $l(l+1)$. The only degeneracy is then related to possible values of j_{z}, namely $d=2 j+1$.
(9) In this problem and the next we assume $|\vec{B}|<\frac{\kappa}{2 I}$, so the ground state has $l=0$. Without loss of generality, we assume that \vec{B} points along the (positive) z axis, so the first excited state has $l=1$, $m=-1$. The correction of the second order perturbation to the energy of the first excited state of the unperturbed Hamiltonian is then

$$
\begin{align*}
\Delta E_{2} & =\epsilon^{2} \hbar^{2}|\vec{A}|^{2} \frac{\left.\left|\langle 1,0| L_{x}\right| 1,-1\right\rangle\left.\right|^{2}}{E_{1,-1}-E_{1,0}} \tag{17}\\
& =\epsilon^{2} \hbar^{2}|\vec{A}|^{2} \frac{\left.\left|\langle 1,0| \frac{1}{2}\left(L_{+}+L_{-}\right)\right| 1,-1\right\rangle\left.\right|^{2}}{E_{1,-1}-E_{1,0}} \tag{18}\\
& =-\epsilon^{2} \hbar^{2}|\vec{A}|^{2} \frac{1}{2|\vec{B}|} \tag{19}
\end{align*}
$$

where we used $L_{-}|1,-1\rangle=0$ and $L_{+}|1,-1\rangle=\hbar \sqrt{2}|1,0\rangle$.
(10) At $t=0$ the system is in a superposition of the first and second excited states of the Hamiltonian H_{0} :

$$
\begin{equation*}
\left|\psi_{0}\right\rangle=\frac{1}{2}(|1,-1\rangle+|1,0\rangle) . \tag{20}
\end{equation*}
$$

The probability that at a time t the system is a superposition of the same two states orthogonal to $\left|\psi_{0}\right\rangle$, thus in

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=\frac{1}{2}(|1,-1\rangle-|1,0\rangle) \tag{21}
\end{equation*}
$$

is

$$
\begin{align*}
P & \left.=\left|\left\langle\psi_{1}\right| e^{\frac{i}{\hbar} t H_{0}}\right| \psi_{0}\right\rangle\left.\right|^{2} \tag{22}\\
& \left.=\left|\left\langle\psi_{1}\right| e^{-i t \frac{\kappa}{I} \hbar} e^{-i t|\vec{B}| L_{z}}\right| \psi_{0}\right\rangle\left.\right|^{2} \tag{23}\\
& =\left\lvert\,\left.\frac{1}{\sqrt{2}}\left\langle\psi_{1}\right|\left(e^{i \hbar t|\vec{B}|}|1,-1\rangle+|1,0\rangle\right)\right|^{2}\right. \tag{24}\\
& =\left|\frac{1}{2}\left(e^{i \hbar t|\vec{B}|}-1\right)\right|^{2} \tag{25}\\
& =\left|\frac{1}{2}\left(e^{\frac{i}{2} \hbar t|\vec{B}|}-e^{-\frac{i}{2} \hbar t|\vec{B}|}\right)\right|^{2} \tag{26}\\
& =\sin ^{2}\left(\frac{1}{2} \hbar|\vec{B}| t\right) \tag{27}
\end{align*}
$$

(11) For the Hamiltonian

$$
\begin{equation*}
H=H_{0}+\hbar \vec{\sigma} \cdot \vec{L}=\frac{\kappa}{2 I}(\vec{L})^{2}+\hbar \vec{B} \cdot \vec{L}+\hbar \vec{\sigma} \cdot \vec{L} \tag{28}
\end{equation*}
$$

the eigenvalue spectrum cannot be determined exactly because the with $\vec{B} \neq 0$ the eigenstates of the Hamiltonian are also eigenstates of L_{z}, and it is not possible to diagonalize L_{z}, J^{2}, S^{2}, and L^{2} simultaneously. Thus we need to treat the term to $\vec{\sigma}$ as a perturbation. The first order correction is

$$
\begin{align*}
\Delta E & =\left\langle l, m, s, m_{s}\right| \hbar \vec{\sigma} \cdot \vec{L}\left|l, m, s, m_{s}\right\rangle, \tag{29}\\
& =\left\langle l, m, s, m_{s}\right| \hbar\left(\sigma_{x} L_{x}+\sigma_{y} L_{y}+\sigma_{z} L_{z}\right)\left|l, m, s, m_{s}\right\rangle, \tag{30}\\
& =\left\langle l, m, s, m_{s}\right| 2 S_{z} L_{z}\left|l, m, s, m_{s}\right\rangle, \tag{31}\\
& =2 \hbar^{2} m_{s} m . \tag{32}
\end{align*}
$$

