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We consider a system of two non-identical spin 1/2 particles in three dimensions whose dynamics are
described by the Hamiltonian

Htot = H1 +H2, (1)

H1 =
~p21
2m

+
~p22
2m
− e2

|~x1 − ~x2|
, (2)

H2 = −A
~2
~s1 · ~s2, (3)

where ~x1, ~x2, ~p1, ~p2, ~s1, ~s2 are respectively the position, momentum and spin operators of the two particles,
and A and e are positive real constants.

Also consider the two following Hamiltonians:

H3 =
1

~2
sz1, (4)

H4 =
1

~2
sz2, (5)

H5 =
1

~2
~B · (~s1 − ~s2), (6)

H6 =
1

~2
~B · (~s1 − ~s2)eiωt, (7)

where ~B is a real vector and ω a positive real constant.

(1) The Hamiltonian H1 can be separated into two commuting terms Hf and Hr:

H1 = Hf +Hr. (8)

To this end, let us define the relative coordinates

~r = ~x1 − ~x2. (9)

With conjugate momenta given by

~p =
~p1 − ~p2

2
, (10)

~P = ~p1 + ~p2. (11)

Define also the total mass M and reduced mass µ as

M = 2m, (12)

µ =
m

2
. (13)

Using these definitions, the Hamiltonian H1 can be written as

H1 = Hf +Hr, (14)

where

Hf =
~P 2

2M
, (15)

Hr =
~p2

2µ
− e2

|~r|
. (16)
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(2) The energy spectrum of the relative Hamiltonian is that of the hydrogen atomt:

Er
n = − µe4

2~2n2
. (17)

For a given value for n all l < n are permitted and for each value of l all −l ≤ lz ≤ l are permitted
which corresponds to a degeneracy of n2.

(3) In the absence of spin-orbit coupling, the spatial Hamiltonian H1 and spin hamiltoinan H2 commute,
so they can be diagonalized separately.

The spectrum of the relative Hamiltonian is given in the previous exercise, while the center of mass
energy is simply

Ecm =
(~p1 + ~p2)

2

2M
=

~P 2

2M
. (18)

The energy corresponding to H1 is thus

E1
n =

~P 2

2M
− µe4

2~2n2
. (19)

Coming to H2, we note that it is diagonalzied in the basis of eigenstates of the operators s2, s21 and
s22, where ~s = ~s1 + ~s2:

H2 = − A

2~2
(
~s2 − ~s21 − ~s22

)
. (20)

For spin-1
2

particles the eigenvalues are

E2
s = −A

2

(
s(s+ 1)− 3

2

)
, (21)

with s ∈ {0, 1}.
The energy spectrum of the Hamiltonian Htot is thus

Etot
n,s =

P 2

2M
− µe4

2~2n2
− A

2

(
s(s+ 1)− 3

2

)
. (22)

The spectrum of the free (center-of-mass) hamiltonian is infinitely degenerate, with all vectors such

that |~P | is fixed corresponding to the same energy level. The relative hamiltonian has degeneracy
n2 as determined at point (2). Because it is given that the spacing of the levels of the Hamiltonian
H2 are smaller than that of the levels of the Hamiltonian H1 there is no additional degeneracy as a
result of different combinations of n and s returning the same energy. This leaves only the threefold
degeneracy corresponding to the triplet state if s = 1, resulting in a total degeneracy of 3n2, and the
degeneracy related to she spin singlet, which for s = 0 is n2.

(4) As we have just seen the Hamiltonian H1 can be separated into a free and a relative Hamiltonian.
It follows that the wave function is the product of a free and a relative eigenfunction:

ψ(~x1, ~x2) = ψf (~R)ψr(~r), (23)

where ~R and ~r are center-of-mass and relative coordinates respectively, ψf is an eigenstate of Hf

and ψr an eigenstate of H+r.
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For the free Hamiltonian it has been shown in Eq. 6.11 and Eq. 6.12 of the textbook, that one
can choose the eigenfunctions to be parity eigenstates. Hence the free wave function can always be
chosen to be even or odd under parity:

ψ±f (−~R) = ±ψ±f (~R), (24)

where

ψ±f (~R) =
1

(2π)3/2

(
ei
~P ·~R ± e−i ~P ·~R

)
. (25)

For the relative Hamiltonian the wavefunction can be written as a product of spherical harmonics and
a radial function, see Eq. 11.213 for the general form. The radial wave function is parity invariant
because r is parity invariant. Hence the parity transformation is entirely due to the angular part. The
parity transinformation in spherical coordinates is given in Eq. 9.117, which for spherical harmonics
implies

〈rϑφ|P |nlm〉 = Ylm(π − ϑ, ϕ+ π)φnl(r) = (−1)lYlm(ϑ, ϕ)φnl(r). (26)

Hence the parity of the relative eigenfnction is entirely determined by the eigenvalue of the total
relative orbital angular momentum l.

(5) Let us define the radial distance r = |~x1 − ~x2|, of which we want to calculate the mean value using:

〈|~x1 − ~x2|〉 = 〈r〉 =

∫ ∞
0

d~xψ∗(r)rψ(r). (27)

The ground state wave function in spherical coordinates can be found in the textbook Eq. 11.226:

ψ(r, θ, ϕ) =
1√
π

(e2µ)
3
2

~3
e−e

2µr/~2 =
1√
π

1

(a0)3/2
e−r/a0 , (28)

with a0 = ~2
e2µ

. This we can plug into Eq. (27):

〈r〉 =
4

a30

∫ ∞
0

r3e−2r/a0 =
3

2
a0. (29)

The mean value of the potential energy is

〈Epot〉 = −e2〈1
r
〉 = −e2 4

a0

∫ ∞
0

re−2r/a0 = −e
2

a0
. (30)

(6) The first order in the perturbation corresponds to the singlet state |s = 0, sz = 0〉,

|s = 0, sz = 0〉 =
1√
2

(|+−〉 − | −+〉) , (31)

and the triplet states

|1, 1〉 = |+ +〉, (32)

|1, 0〉 =
1√
2

(|+−〉+ | −+〉), (33)

|1,−1〉 = | − −〉. (34)

The spin operator is sz1 = ~
2
σz = ~

2
(|+〉〈+| − |−〉〈−|), where the subscript 1 means that acts on the

state corresponding to the first particle only.
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The correction to the energy as a result of the perturbation in the singlet state is

E3
s=0,sz=0 =

〈
sz = 0, s = 0

∣∣∣∣ 1

~2
λsz1

∣∣∣∣ s = 0, sz = 0

〉
, (35)

=
1

2
(〈−+ | − 〈+− |)

∣∣∣∣ 1

~2
λsz1

∣∣∣∣ (|+−〉 − | −+〉) , (36)

=
λ

4~
(〈−+ | +−〉 − 〈+− | −+〉) , (37)

= 0. (38)

For the triplet states we must compute the matrix of the perturbation in the degenerate subspace.
We get, with a calculation similar to that for the singlet state (writing the bras as 〈ssz|)

〈H3〉 =

 〈1− 1|H3|1− 1〉 〈1− 1|H3|10〉 〈1− 1|H3|11〉
〈10|H3|1− 1〉 〈10|H3|10〉 〈10|H3|11〉
〈11|H3|1− 1〉 〈11|H3|10〉 〈11|H3|11〉

 =

 − λ
2~ 0 0

0 0 0
0 0 λ

2~

 , (39)

i.e. the matrix of the perturbation is diagonal. This happens despite the fact that the perturbation
is not diagonal in the basis of eigenstates of Htot, because the non-diagonal matrix element of the
perturbation is between the triplet and the singlet, so it only contributes starting with the second
perturbative order.

The correction to the three energy levels is thus

E3
s=1,sz=−1 = − λ

2~
(40)

E3
s=1,sz=0 = 0 (41)

E3
s=1,sz=+1 =

λ

2~
. (42)

It can now be observed that there is no longer any spin degeneracy.

(7) The kinetic energy is made up of the sum of two parts: the part of the kinetic energy related to the
free Hamiltonian, an the part related to the relative Hamiltonian.

The eigenstates of the free hamiltonian can be chose to be momentum eigenstates with eigenvalue
~P . In such a state the kinetic energy is fixed and equal to

〈Ekin,f〉 = Ekin,f =
~P 2

2M
. (43)

Coming to the relative hamiltonian, we note that for a Hamiltonian of the form H = ~p
2µ

+ V (~x) the
kinetic energy can be determined using the virial theorem given by Eq. 11.134 in the textbook:

2〈Ekin〉 = 〈~x · ~∇V (~x)〉. (44)

In our case, using the result Eq. (30) we get

〈Ekin,r〉 = −1

2
e2〈~x · ~∇r−1〉 = e2

1

2
〈r−1〉 = −1

2
Epot =

e2

2a0
. (45)

The expectation value of the total kinetic energy is thus

〈Ekin〉 = 〈(Ekin,r + Ekin,f )〉 =
~P 2

2M
+

1

2

e2

a0
. (46)

4



Alternatively, one can write the momentum operator in terms of its derivatives in spherical coordi-
nates. For this we can use the radial momentum as given in Eq 9.148 of the textbook:

pr
2 = −~2

(
∂2

∂r2
+

2

r

∂

∂r

)
. (47)

Using this result, and noting that in the ground state ~p2 = p2r because the ground state has vanishing
angular momentum, we get

〈Ekin,r〉 =
1

2µ
〈~p2〉 =

1

2µ

∫
d~xψ∗(r, θ, ϕ)p2rψ(r, θ, ϕ), (48)

=
−~2

2µ

∫
drr2|ψ(r, θ, ϕ)|2

(
1

a20
− 2

ra0

)
, (49)

=
~2

2µ

1

a20
=

e2

2a0
, (50)

here ψ(r, θ, ϕ) is again define as in Eq. (28).

A final possibility is to note that in an energy eigenstate with energy eigenvalue E 〈Ekin + V 〉 =
〈H〉 = E. Hence in the ground state

〈Ekin,r〉 = Erel
0 − 〈Epot〉 = − e2

2a0
+
e2

a0
=

e2

2a0
. (51)

(8) The time dependence of a state in a system described by the Hamiltonian H = H1 + H5, with
~B = | ~B|x̂ is

|ψ, t〉 = e−iHt/~|ψ〉. (52)

Because there is no spin-orbit coupling, the spatial and spin wave functions evolve independently.
Hence, the probability only depends on the spin wave function. This consideration will also hold for
the subsequent questions (9) and (10).

Also, for this question one observes that the spin HamiltonianH5 does not couple the two spins. hence
the spin wave function for the first and the second particle evolve independently. The probability
then only depends on the time evolution of the spin wave function of the first particle, which is given
by

|sz,1, t〉 = e−iHt/~|sz,1〉. (53)

If at time t = 0 the a measurement of the spin of the first particle is performed, and found to be
s1,z = +~

2
, the probability of a measurement returning s1,z = −~

2
at a time t = T is then

P =
∣∣〈− ∣∣e−i(H1+H5)T/~

∣∣+〉∣∣2 , (54)

=
∣∣∣〈− ∣∣∣e−i| ~B|~s1,xT/~3∣∣∣+〉∣∣∣2 , (55)

=
∣∣∣〈− ∣∣∣e−i| ~B|~σ1,xT/2~2∣∣∣+〉∣∣∣2 , (56)

=
∣∣∣〈− ∣∣∣cos(| ~B|T/(2~2))I− i sin(| ~B|T/(2~2))σ1,x

∣∣∣+〉∣∣∣2 , (57)

= sin2(| ~B|T/(2~2)). (58)

(9) At time t = 0 a spin measurement of the two particles is made, the result of the measurement on
the first particle is s1,z = ~

2
. Here we are given a choice between performing the rest of this exercise
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with the assumption that the measurement of the second particle returned either (a) s2,z = ~
2

or (b)
s2,z = −~

2
.

In order to compute the given probability, we expand the two possible initial states and the final
state on eigenfunctions of the Hamiltonian. The initial states are | + +〉 = |1, 1〉 for case (a) and
| + −〉 = 1√

2
(|1, 0〉 + |0, 0〉) for case (b). The final states that would result in measuring s1,z = −~

2
,

are | − −〉 = |1,−1〉 and | −+〉 = 1√
2
(|1, 0〉 − |0, 0〉).

Let us first consider option (a). In this case, the initial state is an eigenstate of the Hamiltonian, so
this is a stationary state, and the probability is zero. More formally the probabilities, for the two
possible final states, are

P−− = |〈1,−1|1, 1〉|2 = 0. (59)

P−+ =

∣∣∣∣ 1√
2

(〈0, 1| − 〈0, 0|)|1, 1〉
∣∣∣∣2 = 0. (60)

(61)

Now for option (b) the probabilities for the two possible final states are

P−− =

∣∣∣∣〈1,−1| 1√
2

(
e−iE

2
1T/~|1, 0〉+ e−iE

2
0T/~|0, 0〉

)∣∣∣∣2 = 0; (62)

P−+ =

∣∣∣∣ 1√
2

(〈1, 0| − 〈0, 0|) 1√
2

(
e−iE

2
1T/~|1, 0〉+ e−iE

2
0T/~|0, 0〉

)∣∣∣∣2 , (63)

=
1

4

∣∣∣e−iE2
1T/~ − e−iE2

0T/~
∣∣∣2 =

1

4

∣∣e−iAT/4~ (eiAT/2~ − e−iAT/2~)∣∣2 ,
= sin2(AT/2~). (64)

Hence, the probability in this case is

P = P−+ = sin2(AT/2~). (65)

(10) Because the perturbation acts only on spin the spatial Hamiltonian only provides an overall phase
which does not contribute to ttransition probabilities. The ground state of Htot is the threefold
degenerate triplet state |n, s, sz〉 = |1, 1, sz〉, with sz ∈ −1, 0, 1. The first excited state is |n, s, sz〉 =
|1, 0, 0〉, which is the singlet state Treating H6 as a first order perturbation, the probability for a
transition between any of the triplets states with different sz and the singlet state is

Psz(t) =

∣∣∣∣〈1, 0, 0 | 1

i~

∫ t

0

dt′eiHtott′/~H6e
−iHtott′/~ | 1, 1, sz〉

∣∣∣∣2 , (66)

=

∣∣∣∣1~
∫ t

0

dt′ei(E
tot
1 −Etot

0 )t′/~〈1, 0, 0 | H6 | 1, 1, sz〉
∣∣∣∣2 , (67)

=

∣∣∣∣1~
∫ t

0

dt′ei(ω+A
′/~)t′〈1, 0, 0 | 1

~2
~B · (~s1 − ~s2) | 1, 1, sz〉

∣∣∣∣2 . (68)

Without loss of generality we can now chhose the magnetic field along the z axis, ~B = | ~B|ẑ, which
gives

Psz(t) =
1

~6

∣∣∣∣∫ t

0

dt′ exp (i(ω + A′/~)t′) | ~B|〈1, 0, 0 | (~s1,z − ~s2,z) | 1, 1, sz〉
∣∣∣∣2 . (69)

(70)
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We now note that the Hamiltonian H6 annihilates the sz = ±1 states of the triplet, while it turns
the sz = 0 state of the triplet into the singlet:

H6|n = 1, s = 1, sz = 0〉 = H6
1√
2

(|+−〉+ | −+〉)

=
| ~B|
~

1√
2

(|+−〉 − | −+〉) =
| ~B|
~
|n = 1, s = 1, sz = 0〉 (71)

H6|n = 1, s = 1, sz = ±1〉 = 0. (72)

Using this, calculating the matrix element is relatively straightforward (as was just mentioned, acting
on the singlet state with the Hamiltonian H6 gives the sz = 0 state of the triplet), and after doing
so we find

P (t) =
1

~4

∣∣∣∣∫ t

0

dt′e(
A
~ +ω)it′ | ~B|

∣∣∣∣2 , (73)

=
4| ~B|2

~4

[(
A

~
+ ω

)
t

]−2
sin2

[(
A

~
+ ω

)
t

2

]
(74)

(11) In exercise (3) we found the energy spectrum of Htot which was determined under the assumption hat
the two spin-1

2
particles of the system were non-identical. However, here we are asked to determine

the spectrum for the case of identical particles and this affects the degeneracy. Because the particles
are fermions, the the wave function must be anti-symmetric.

Here we again consider the parity relation given in Eq. (26). Because r in that equation is a relative
coordinate, parity corresponds to the interchange of the two particles. Hence, states with even l are
even and states with odd l are odd.

Then, normally the degeneracy is found summing 0 ≤ l ≤ n− 1, with 2l + 1 states for each l. Here,
one must distinguish n even and n odd.

For n odd and l even we have

n−1∑
l∈even

(2l + 1) =

(n−1)/2∑
l=0

(4l + 1) =
1

2
n(n+ 1), (75)

while for n odd and l odd we have

n−1∑
l∈odd

(2l + 1) =
n−2∑
l∈odd

(2l + 1) =

(n−2)/2∑
l=0

(4l + 1) =
1

2
n(n− 1), (76)

where we used
n∑
l=0

=
1

2
n(n+ 1). (77)

Now we still have to take into account the threefold degeneracy of the triplet state, which means
that for l odd and n odd the degeneracy is 3

2
n(n− 1), while for l even and n odd the degeneracy is

1
2
n(n+ 1).

Now we can repeat the above for n even. This time we find that for n even and l odd the degeneracy
is 3

2
n(n+ 1), while for the case with both n and l even the degeneracy is 1

2
n(n− 1).
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