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Consider a three-dimensional system whose dynamics is described by the Hamiltonian

H =
(~p− ~A(~x))2

2m
− e2

r
, (1)

where ~x and ~p are the position and momentum operators, r = |~x|, and ~A(~x) (potential vector) is a vector
of functions of position operators.

(1) Here we define the operator

~v =
1

m
(~p− ~A(~x)), (2)

for which we can determine the commutation relations between each of its components and the
components of the position operator as follows:

[vi, xj] =
1

m
[pi − Ai(~x), xj] =

1

m
[pi, xj] = −i~

m
δij. (3)

(2) The commutation between any two components of the operator vi is given by[
vi, vj

]
=

[
1

m

(
pi − Ai(~x)

)
,

1

m

(
pj − Aj(~x)

)]
,

= − 1

m2

([
pi, Aj(~x)

]
+
[
Aj(~x), pi

])
,

=
i~
m2

(
∂iAj(~x)− ∂jAi(~x)

)
.

(4)

(3) The Heisenberg equation of motion for the position operator ~x is

dxj

dt
=
i

~
[
H, xj

]
=

i

2m~

[
pipi − piAi(~x)− Ai(~x)pi − Ai(~x)Ai(~x)− e2

r
, xj
]
, (5)

=
i

2m~
(
pi[p

i, xj] + [pi, x
j]pi − Ai(~x)[pi, xj]− [pi, x

j]Ai(~x)
)
, (6)

=
1

m
(pj − Aj(~x)) = vj. (7)

(4) Assuming that ~A(~x) is given by

~A(~x) =
B

2

 −x2x1
0

 , (8)

we can write the Hamiltonian H as

H =
1

2m

(
p21 + p22

)
+
B2

8m

(
x21 + x22

)
− B

2m
(x1p2 − x2p1) +

p23
2m
− e2

r
. (9)

Using the fact that the third component orbital angular momentum L3 can be written as

L3 = x1p2 − x2p1, (10)

we can write the Hamiltonian H in terms of the requested operators:

H =
1

2m

(
p21 + p22

)
+
B2

8m

(
x21 + x22

)
− B

2m
L3 +

p23
2m
− e2

r
. (11)
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(5) In the case where e = 0, and Eq. (9) still holds, the Hamiltonian H can be split into a part that
depends only on the coordinates x1 and x2 and a part which depends only on the coordinate x3 (and
the respective momenta) as

H = H12 (x1, x2, p1, p2) +H3 (x3, p3) , (12)

H12 (x1, x2, p1, p2) =
1

2m

(
p21 + p22

)
+
B2

8m

(
x21 + x22

)
− B

2m
L3, (13)

H3 (x3, p3) =
p23
2m

. (14)

It can now be seen that H3 is a free-particle Hamiltonian which we know has a continuous energy

E3
k3

=
~2k23
2m

, (15)

where ±~k3 are the eigenvalues of the momentum operator p3.

Let us now write H12 in the form

H12 (x1, x2, p1, p2) = Hosc. +
1

2
mω2x22 − ωL3, (16)

where

ω =
B

2m
, (17)

and

Hosc =
p21
2m

+
1

2
mω2x21 +

p22
2m

, (18)

is the Hamiltonians of a harmonic oscillators defined in the dimensions x1 and x2. For such a
Hamiltonian we know that the eigenvalue spectrum is

Eosc
n = ~ω

(
n1 +

1

2

)
+ ~ω

(
n2 +

1

2

)
= ~ω (n+ 1) , (19)

where n1 + n2 = n.

Next, we note that Hosc is invariant under rotation:

[Hosc, L3] = 0, (20)

which means that we the eigenstates of H12 can be chosen as simultaneous eigenstates of H and
L3. The eigenvalues are then ths sum of the eigenstates of a two-dimensional harmonic oscillator
with quantum number n, and the eigenstates of the third component of the angular momentum with
quantum number l3.

Summing the eigenvalues discussed above, we can write the spectrum of eigenvalues of H as

En,l3,k3 = ~ω(n+ 1− l3) +
~2k23
2m

, (21)

with integer n and l3 and continuous k3.

(6) See Sect. 9.2.2 of the textbook.

(7) The spectrum of the Hamiltonian in the x1, x2 plane is given by

En,l3 = ~ω(n+ 1− l3). (22)

This is infinitely degenerate because the spectrum of n includes all the positive integers and the
spectrum of l3 all the integers, so given any eigenstate with eigenvalue En,l3 we can obtain an infinite
number of eigenstates with the same eigenvalue by simply picking any other eigenstate in which the
values of n and l3 are increased by the same amount: Eq. (23) implies that En,l3 = En+k,l3+k. The
degeneracy of the spectrum given in Eq. (22) is of course the same.
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(8) We now consider the case in which e 6= 0 and ~A(~x) is given by Eq. (9). Treating ~A(~x) as a first order
perturbation in B, we can write the Hamiltonian as

H = HH −
B

2m
L3 +O(B2), (23)

where HH is the Hamiltonian of the Hydrogen atom

HH =
~p2

2m
− e2

r
, (24)

and we have neglected terms of order B2 and higher.

The spectrum of the hydrogen atom is

En = − me4

2~2n2
. (25)

The hydrogen eigenstates can be chosen as angular momentum eigenstates |nll3〉, with l ≤ n − 1,
−l ≤ l3 ≤ l. In such a state the first-order perturbation is given by

∆Enll3 = − B

2m
〈nll3|L3|nll3〉 == − B

2m
~l3. (26)

(9) Let us consider an eigenfunction ψ(~x) of the Hamiltonian H. The Schrödinger equation for this
eigenfunction can be written as

Hψ(~x) = Eψ(~x). (27)

Transforming both the Hamiltonian and the eigenstate as suggested in the hint gives

e−iφ(~x)Heiφ(~x)e−iφ(~x)ψ(~x) = Ee−iφ(~x)ψ(~x), (28)

where we now see that e−iφ(~x)ψ(~x) is an eigenfunction of the Hamiltonian

e−iφ(~x)Heiφ(~x) = e−iφ(~x)
(~p− ~A(~x))2

2m
eiφ(~x) − e2

r
. (29)

Here we have

e−iφ(~x)(~p− ~A(~x))eiφ(~x) = e−iφ(~x)(−i~~∇− ~A(~x))eiφ(~x), (30)

= −i~~∇− ~A(~x) + ~~∇φ(~x), (31)

= ~p−
(
~A(~x) + ~∇Λ(~x)

)
, (32)

where in the last step we used Λ(~x) ≡ −~φ(~x).

This shows that two Hamiltonians of the form Eq. (1), having two different potential vectors A1(~x)
and A2(~x) such that

A1(~x) = A2(~x) + ~∇Λ(~x) (33)

are unitarily equivalent.

(10) In the previous exercise we have shown unitary equivalence between Hamiltonians of the form Eq. (1)
and where the potential vectors A(~x) are related as in Eq. (34). Here we will use this to determine
the spectrum of Eq. (1) if A(~x) is

~A(~x) =
B

2

 x2
x1
0

 . (34)
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Namely, choosing Λ(~x) = −B
2
x1x2 we see that

~A′(~x) = ~A(~x)− B

2
~∇(x1x2) = ~0, (35)

meaning the spectrum of the Hamiltonian Eq. (1) with A(~x) Eq. (35) is the same as that of the
Hamiltonian HH Eq. (25), which we recognise as the Hamiltonian of the hydrogen atom of which
the spectrum is given by Eq. (26).

(11) The spectrum of Eq. (27) depends on both l3 and n. Here we have, for each combination of n and
l3, possible integer values of the azimuthal quantum number l in the range |l3| ≤ l ≤ n− 1, and thus
the degeneracy is

d = n− |l3|. (36)
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