QUANTUM MECHANICS II EXAM

23 June 2021

Answers sheet

Consider a three-dimensional system whose dynamics is described by the Hamiltonian

$$
\begin{equation*}
H=\frac{(\vec{p}-\vec{A}(\vec{x}))^{2}}{2 m}-\frac{e^{2}}{r}, \tag{1}
\end{equation*}
$$

where \vec{x} and \vec{p} are the position and momentum operators, $r=|\vec{x}|$, and $\vec{A}(\vec{x})$ (potential vector) is a vector of functions of position operators.
(1) Here we define the operator

$$
\begin{equation*}
\vec{v}=\frac{1}{m}(\vec{p}-\vec{A}(\vec{x})), \tag{2}
\end{equation*}
$$

for which we can determine the commutation relations between each of its components and the components of the position operator as follows:

$$
\begin{equation*}
\left[v^{i}, x^{j}\right]=\frac{1}{m}\left[p^{i}-A^{i}(\vec{x}), x^{j}\right]=\frac{1}{m}\left[p^{i}, x^{j}\right]=-\frac{i \hbar}{m} \delta^{i j} . \tag{3}
\end{equation*}
$$

(2) The commutation between any two components of the operator v^{i} is given by

$$
\begin{align*}
{\left[v^{i}, v^{j}\right] } & =\left[\frac{1}{m}\left(p^{i}-A^{i}(\vec{x})\right), \frac{1}{m}\left(p^{j}-A^{j}(\vec{x})\right)\right], \\
& =-\frac{1}{m^{2}}\left(\left[p^{i}, A^{j}(\vec{x})\right]+\left[A^{j}(\vec{x}), p^{i}\right]\right), \tag{4}\\
& =\frac{i \hbar}{m^{2}}\left(\partial^{i} A^{j}(\vec{x})-\partial^{j} A^{i}(\vec{x})\right) .
\end{align*}
$$

(3) The Heisenberg equation of motion for the position operator \vec{x} is

$$
\begin{align*}
\frac{\mathrm{d} x^{j}}{\mathrm{~d} t} & =\frac{i}{\hbar}\left[H, x^{j}\right]=\frac{i}{2 m \hbar}\left[p^{i} p_{i}-p^{i} A_{i}(\vec{x})-A^{i}(\vec{x}) p_{i}-A^{i}(\vec{x}) A_{i}(\vec{x})-\frac{e^{2}}{r}, x^{j}\right] \tag{5}\\
& =\frac{i}{2 m \hbar}\left(p_{i}\left[p^{i}, x^{j}\right]+\left[p_{i}, x^{j}\right] p^{i}-A_{i}(\vec{x})\left[p^{i}, x^{j}\right]-\left[p_{i}, x^{j}\right] A^{i}(\vec{x})\right), \tag{6}\\
& =\frac{1}{m}\left(p^{j}-A^{j}(\vec{x})\right)=v^{j} . \tag{7}
\end{align*}
$$

(4) Assuming that $\vec{A}(\vec{x})$ is given by

$$
\vec{A}(\vec{x})=\frac{B}{2}\left(\begin{array}{c}
-x_{2} \tag{8}\\
x_{1} \\
0
\end{array}\right)
$$

we can write the Hamiltonian H as

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{B^{2}}{8 m}\left(x_{1}^{2}+x_{2}^{2}\right)-\frac{B}{2 m}\left(x_{1} p_{2}-x_{2} p_{1}\right)+\frac{p_{3}^{2}}{2 m}-\frac{e^{2}}{r} \tag{9}
\end{equation*}
$$

Using the fact that the third component orbital angular momentum L_{3} can be written as

$$
\begin{equation*}
L_{3}=x_{1} p_{2}-x_{2} p_{1}, \tag{10}
\end{equation*}
$$

we can write the Hamiltonian H in terms of the requested operators:

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{B^{2}}{8 m}\left(x_{1}^{2}+x_{2}^{2}\right)-\frac{B}{2 m} L_{3}+\frac{p_{3}^{2}}{2 m}-\frac{e^{2}}{r} . \tag{11}
\end{equation*}
$$

(5) In the case where $e=0$, and Eq. (9) still holds, the Hamiltonian H can be split into a part that depends only on the coordinates x_{1} and x_{2} and a part which depends only on the coordinate x_{3} (and the respective momenta) as

$$
\begin{align*}
H & =H_{12}\left(x_{1}, x_{2}, p_{1}, p_{2}\right)+H_{3}\left(x_{3}, p_{3}\right), \tag{12}\\
H_{12}\left(x_{1}, x_{2}, p_{1}, p_{2}\right) & =\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{B^{2}}{8 m}\left(x_{1}^{2}+x_{2}^{2}\right)-\frac{B}{2 m} L_{3}, \tag{13}\\
H_{3}\left(x_{3}, p_{3}\right) & =\frac{p_{3}^{2}}{2 m} . \tag{14}
\end{align*}
$$

It can now be seen that H_{3} is a free-particle Hamiltonian which we know has a continuous energy

$$
\begin{equation*}
E_{k_{3}}^{3}=\frac{\hbar^{2} k_{3}^{2}}{2 m} \tag{15}
\end{equation*}
$$

where $\pm \hbar k_{3}$ are the eigenvalues of the momentum operator p_{3}.
Let us now write H_{12} in the form

$$
\begin{equation*}
H_{12}\left(x_{1}, x_{2}, p_{1}, p_{2}\right)=H_{\text {osc. }}+\frac{1}{2} m \omega^{2} x_{2}^{2}-\omega L_{3}, \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=\frac{B}{2 m} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{\mathrm{osc}}=\frac{p_{1}^{2}}{2 m}+\frac{1}{2} m \omega^{2} x_{1}^{2}+\frac{p_{2}^{2}}{2 m} \tag{18}
\end{equation*}
$$

is the Hamiltonians of a harmonic oscillators defined in the dimensions x_{1} and x_{2}. For such a Hamiltonian we know that the eigenvalue spectrum is

$$
\begin{equation*}
E_{n}^{\mathrm{osc}}=\hbar \omega\left(n_{1}+\frac{1}{2}\right)+\hbar \omega\left(n_{2}+\frac{1}{2}\right)=\hbar \omega(n+1) \tag{19}
\end{equation*}
$$

where $n_{1}+n_{2}=n$.
Next, we note that $H_{\text {osc }}$ is invariant under rotation:

$$
\begin{equation*}
\left[H_{\mathrm{osc}}, L_{3}\right]=0, \tag{20}
\end{equation*}
$$

which means that we the eigenstates of H_{12} can be chosen as simultaneous eigenstates of H and L_{3}. The eigenvalues are then ths sum of the eigenstates of a two-dimensional harmonic oscillator with quantum number n, and the eigenstates of the third component of the angular momentum with quantum number l_{3}.
Summing the eigenvalues discussed above, we can write the spectrum of eigenvalues of H as

$$
\begin{equation*}
E_{n, l_{3}, k_{3}}=\hbar \omega\left(n+1-l_{3}\right)+\frac{\hbar^{2} k_{3}^{2}}{2 m} \tag{21}
\end{equation*}
$$

with integer n and l_{3} and continuous k_{3}.
(6) See Sect. 9.2.2 of the textbook.
(7) The spectrum of the Hamiltonian in the x_{1}, x_{2} plane is given by

$$
\begin{equation*}
E_{n, l_{3}}=\hbar \omega\left(n+1-l_{3}\right) \tag{22}
\end{equation*}
$$

This is infinitely degenerate because the spectrum of n includes all the positive integers and the spectrum of l_{3} all the integers, so given any eigenstate with eigenvalue $E_{n, l_{3}}$ we can obtain an infinite number of eigenstates with the same eigenvalue by simply picking any other eigenstate in which the values of n and l_{3} are increased by the same amount: Eq. (23) implies that $E_{n, l_{3}}=E_{n+k, l_{3}+k}$. The degeneracy of the spectrum given in Eq. (22) is of course the same.
(8) We now consider the case in which $e \neq 0$ and $\vec{A}(\vec{x})$ is given by Eq. (9). Treating $\vec{A}(\vec{x})$ as a first order perturbation in B, we can write the Hamiltonian as

$$
\begin{equation*}
H=H_{H}-\frac{B}{2 m} L_{3}+O\left(B^{2}\right) \tag{23}
\end{equation*}
$$

where H_{H} is the Hamiltonian of the Hydrogen atom

$$
\begin{equation*}
H_{H}=\frac{\vec{p}^{2}}{2 m}-\frac{e^{2}}{r} \tag{24}
\end{equation*}
$$

and we have neglected terms of order B^{2} and higher.
The spectrum of the hydrogen atom is

$$
\begin{equation*}
E_{n}=-\frac{m e^{4}}{2 \hbar^{2} n^{2}} \tag{25}
\end{equation*}
$$

The hydrogen eigenstates can be chosen as angular momentum eigenstates $\left|n l l_{3}\right\rangle$, with $l \leq n-1$, $-l \leq l_{3} \leq l$. In such a state the first-order perturbation is given by

$$
\begin{equation*}
\Delta E_{n l l_{3}}=-\frac{B}{2 m}\left\langle n l l_{3}\right| L_{3}\left|n l l_{3}\right\rangle==-\frac{B}{2 m} \hbar l_{3} . \tag{26}
\end{equation*}
$$

(9) Let us consider an eigenfunction $\psi(\vec{x})$ of the Hamiltonian H. The Schrödinger equation for this eigenfunction can be written as

$$
\begin{equation*}
H \psi(\vec{x})=E \psi(\vec{x}) . \tag{27}
\end{equation*}
$$

Transforming both the Hamiltonian and the eigenstate as suggested in the hint gives

$$
\begin{equation*}
e^{-i \phi(\vec{x})} H e^{i \phi(\vec{x})} e^{-i \phi(\vec{x})} \psi(\vec{x})=E e^{-i \phi(\vec{x})} \psi(\vec{x}), \tag{28}
\end{equation*}
$$

where we now see that $e^{-i \phi(\vec{x})} \psi(\vec{x})$ is an eigenfunction of the Hamiltonian

$$
\begin{equation*}
e^{-i \phi(\vec{x})} H e^{i \phi(\vec{x})}=e^{-i \phi(\vec{x})} \frac{(\vec{p}-\vec{A}(\vec{x}))^{2}}{2 m} e^{i \phi(\vec{x})}-\frac{e^{2}}{r} . \tag{29}
\end{equation*}
$$

Here we have

$$
\begin{align*}
e^{-i \phi(\vec{x})}(\vec{p}-\vec{A}(\vec{x})) e^{i \phi(\vec{x})} & =e^{-i \phi(\vec{x})}(-i \hbar \vec{\nabla}-\vec{A}(\vec{x})) e^{i \phi(\vec{x})}, \tag{30}\\
& =-i \hbar \vec{\nabla}-\vec{A}(\vec{x})+\hbar \vec{\nabla} \phi(\vec{x}), \tag{31}\\
& =\vec{p}-(\vec{A}(\vec{x})+\vec{\nabla} \Lambda(\vec{x})), \tag{32}
\end{align*}
$$

where in the last step we used $\Lambda(\vec{x}) \equiv-\hbar \phi(\vec{x})$.
This shows that two Hamiltonians of the form Eq. (1), having two different potential vectors $A_{1}(\vec{x})$ and $A_{2}(\vec{x})$ such that

$$
\begin{equation*}
A_{1}(\vec{x})=A_{2}(\vec{x})+\vec{\nabla} \Lambda(\vec{x}) \tag{33}
\end{equation*}
$$

are unitarily equivalent.
(10) In the previous exercise we have shown unitary equivalence between Hamiltonians of the form Eq. (1) and where the potential vectors $A(\vec{x})$ are related as in Eq. (34). Here we will use this to determine the spectrum of Eq. (1) if $A(\vec{x})$ is

$$
\vec{A}(\vec{x})=\frac{B}{2}\left(\begin{array}{c}
x_{2} \tag{34}\\
x_{1} \\
0
\end{array}\right)
$$

Namely, choosing $\Lambda(\vec{x})=-\frac{B}{2} x_{1} x_{2}$ we see that

$$
\begin{equation*}
\overrightarrow{A^{\prime}}(\vec{x})=\vec{A}(\vec{x})-\frac{B}{2} \vec{\nabla}\left(x_{1} x_{2}\right)=\overrightarrow{0}, \tag{35}
\end{equation*}
$$

meaning the spectrum of the Hamiltonian Eq. (1) with $A(\vec{x})$ Eq. (35) is the same as that of the Hamiltonian H_{H} Eq. (25), which we recognise as the Hamiltonian of the hydrogen atom of which the spectrum is given by Eq. (26).
(11) The spectrum of Eq. (27) depends on both l_{3} and n. Here we have, for each combination of n and l_{3}, possible integer values of the azimuthal quantum number l in the range $\left|l_{3}\right| \leq l \leq n-1$, and thus the degeneracy is

$$
\begin{equation*}
d=n-\left|l_{3}\right| . \tag{36}
\end{equation*}
$$

