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Answers sheet

We consider a system formed by three particles of spin 1
2
and of equal mass m in three dimensions,

confined within a parallelepiped. The particles are to be considered in general not identical. The dynamics
are described by the Hamiltonian

H =
p⃗21
2m

+
p⃗22
2m

+
p⃗23
2m

+ V (x⃗1) + V (x⃗2) + V (x⃗3)−
λ

ℏ2
s⃗1 · s⃗2 +

1

ℏ
B⃗ · (s⃗1 + s⃗2)−

µ

ℏ2
(s⃗2 · s⃗3 + s⃗3 · s⃗1) , (1)

where x⃗i, p⃗i and s⃗i are the position, momentum and spin operators for the two particles, respectively, µ
and λ are real positive constants and B⃗ is a three-dimensional vector with real components. The potential
V (x⃗i) has the form

V (xi) =


0 if

∣∣∣x(j)i

∣∣∣ ≤ a

∞ if
∣∣∣x(j)i

∣∣∣ > a
(2)

where x
(j)
i is the j-th component of the position operator for the i-th particle and a is a positive real

constant.

(1) If we set µ = λ = 0, and Bi = 0 for each i, the Hamitlonian Eq. (1) becomes

HV =
p⃗21
2m

+
p⃗22
2m

+
p⃗23
2m

+ V (x⃗1) + V (x⃗2) + V (x⃗3) , (3)

which can be separated into three one-dimensional Hamiltonians describing a ‘particle in a box’ for
each particle. Thus the eigenvalues spectrum is

EV = El1,l2,l3 + Em1,m2,m3 + En1,n2,n3 , (4)

with with li, mi and ni positive integers, and

Ei,j,k =
π2ℏ2

8ma2
(
i2 + j2 + k2

)
. (5)

(2) The wave function of the system described question (1) can be written as

ψ = ϕl1,l2,l3 (x⃗1)ϕm1,m2,m3 (x⃗2)ϕn1,n2,n3 (x⃗3)χs21,s
z
1,s

2
2,s

z
2,s

2
3,s

z
3
, (6)

where
ϕi,j,k (x⃗) = ϕi(x)ϕj(y)ϕk(z), (7)

with

ϕn(x) =


√

1
a
cos nπ

2a
x, if n is odd√

1
a
sin nπ

2a
x, if n is even

(8)

and χ denotes the spin-dependant part of the wave function.

(3) If we again consider the system as described in exercise (1), the degeneracy of the ground state is
deg = 8. This is because the spatial part of the ground state is non-degenerate, but each particle
can be in one of two spin states, and thus the spin degeneracy is deg = 23 = 8.

For the first excited state the spatial part has deg = 9, leading to a total degeneracy of deg = 9×8 = 72.
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(4) Here we are interested in the eigenvalues of the Hamiltonian Eq. (1) in case λ ̸= 0, but µ = 0, Bi = 0
for each i.

Let us consider

Hλ = − λ

ℏ2
s⃗1 · s⃗2 (9)

which can be written in a basis of the eigenstates of the operators s212, s
z
12, s

2
1 and s22, where

s⃗12 = s⃗1 + s⃗2. In this basis the Hamiltonian is

Hλ = − λ

2ℏ2
(
s212 − s21 − s22

)
, (10)

and the corresponding eigenvalues are

Eλ
s12

=
λ

2

(
s12(s12 + 1)− 3

2

)
, (11)

for s12 ∈ {0, 1}.

(5) The degeneracy correspondig to the eigenvalues Eλ
s12

, is deg = 2s12 + 1. Since the third particle can
be in one of two states for each value of Eλ

s12
, the total spin degeneracy is deg = 2(2s12 + 1).

(6) Let us consider two angular momenta L⃗1 and L⃗2, and a total angular momentum L⃗tot = L⃗1 + L⃗2.
The Clebsch-Gordan coefficients ⟨m1m2|lm⟩ are only non-zero if m = m1 +m2. This can be shown

using the identity for the third component of the angular momentum L⃗z
tot = L⃗z

1 + L⃗z
2. Namely, we

have
L⃗z
tot|lm⟩ = ℏm|lm⟩,

(
L⃗z
1 + L⃗z

2

)
|m1m2⟩ = ℏ(m1 +m2)|m1m2⟩, (12)

from which it follows that

⟨m1m2|L⃗z
tot − L⃗z

1 − L⃗z
2|ml⟩ = ℏ(m−m1 −m2)⟨m1m2|lm⟩ = 0. (13)

Here it is clear that the Clebsch-Gordan coefficients can only be non-zero if m = m1 +m2.

(7) Here we wish to determine the Heisenberg equations of motion for the operator s⃗1 in the case where

λ, µ and B⃗ are all non-zero. The equations of motion for s⃗1 are

ds⃗1
dt

= − i

ℏ
[s⃗1, H]. (14)

To write out the left hand side, we use the components of s⃗1 satisfy the commutation relations

[si1, s
j
1] = iℏϵijksk1. (15)

Working out the equation of motion for each component of s⃗1 takes a bit of work, and the final
answer is

ds⃗1
dt

= − λ

ℏ2
s⃗2 × s⃗1 +

1

ℏ
B⃗ × s⃗1 −

µ

ℏ2
s⃗3 × s⃗1. (16)

(8) Let us consider the Hamiltonian of question 4 (i.e. λ ̸= 0, µ = 0 and Bi = 0 for each i) as an

unperturbed Hamiltonian. Now we suppose that B⃗ ̸= 0, and treat the term proportional to B⃗ as a
perturbation. Without loss of generality we can assume that B⃗ is directed along the z-axis, and we
can again write the Hamiltonian in a diagonal basis:

H8 = HV − λ

ℏ2
s⃗1 · s⃗2 +

1

ℏ
|B⃗|sz12, (17)

= HV − λ

2ℏ2
(s⃗212 − s⃗21 − s⃗22) +

1

ℏ
|B⃗|sz12, (18)
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In such case the first-order perturbation for the singlet state is given by

∆Es12=0,sz12=0 = ⟨sz12 = 0, s12 = 0|1
ℏ
|B⃗|sz12|s12 = 0, sz12 = 0⟩ = 0, (19)

and for the triplet state, in the basis

|s12 = 1, sz12⟩ =

 |1, 1⟩
|1, 0⟩
|1,−1⟩

 (20)

it is given by

∆Es12=1,sz12
= ⟨sz12, s12 = 1|1

ℏ
|B⃗|sz12|s12 = 1, sz12⟩ = |B⃗|

1 0 0
0 0 0
0 0 −1

 . (21)

The perturbation removes the spin degeneracy of particles 1 and 2.

(9) In the case where Bi = 0 for each i, but λ = µ ̸= 0, the Hamiltonian Eq. (1) can be written as

H9 = HV +Hµ, (22)

where

Hµ = − µ

ℏ2
(s⃗1 · s⃗2 + s⃗2 · s⃗3 + s⃗3 · s⃗1) , (23)

= − µ

2ℏ2
(
s⃗2123 − s⃗21 − s⃗22 − s⃗23

)
, (24)

where we defined s⃗123 = s⃗1 + s⃗2 + s⃗3. The eigenvalue spectrum of Hµ is

Eµ
s123

= −µ
2

(
s123(s123 + 1)− 9

4

)
, (25)

with s123 ∈ {1
2
, 3
2
}.

In order to compute the degeneracy consider the eight states of the basis s21, s
,
2s

3
3, s

z
1, s

z
2, s

z
3:

|1
2
± 1

2
⟩1|

1

2
± 1

2
⟩2|

1

2
± 1

2
⟩3. (26)

We can combine the first two spins, thus getting a singlet and triplet |1m⟩12|12 ±
1
2
⟩3, |00⟩12|12 ±

1
2
⟩3.

Combining now the result with the third particle we get states |sszs12⟩ corresponding to

|3
2
, sz, 1⟩, |1

2
, sz, 1⟩, |1

2
, sz, 0⟩. (27)

Hence the state with s123 =
3
2
is four times degenerate (four possible values of sz) and the state with

s123 =
1
2
is also four time degenerate (two possible values of sz when s12 = 1 and two possible values

of sz when s12 = 0).

(10) Considering again a system described by the Hamiltonian of the previous question, H9, we now
assume the case in which the particles are identical. Furthermore, we also assume that µ = λ≫ 1

ma2
.

This inequality means that ground state corresponds to a state in which the term proportional to µ
in E9 is minimized, and thus s123 =

3
2
. For s123 =

3
2
, the spin wave function is completely symmetric,
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and thus we need a spatial wave function that is completely anti-symmetric. This means that any
two particles cannot be in the same state, and thus ground state is

E0 = E1,1,1 + E1,2,1 + E1,1,2 + Eµ
3/2. (28)

Because the wave function is completely antisymmetrized, it is not degenerate for each choice of
quantum numbers of the three particles. However, there are three different ways of choosing these
sets of quantum numbers for the spatial part: namely by having the two different particles in the first
excited state to have their sets of quantum numbers equal to ((1, 2, 1); (1, 1, 2)), or ((2, 1, 1); (1, 1, 2)),
or ((2, 1, 1); (1, 2, 1)). This leads to a threefold degeneracy of the spatial wave function. Furthermore,
there are four possible choices for sz123, the third component of the total spin, all asscoiated to a fully
symmetric spin wave function, leading to a fourfold degeneracy of the spatial wave function. Hence
there are 12 degenerate distinct fully antysimmetrized wave function, leading to d = 12.

(11) Let us consider a case similar to the previous question but this time assuming µ = λ ≪ 1
ma2

. In
this case the ground state is the state for which the spatial part of the eigenvalue is minimized. As
an initial thought, one might think the spatial part of the eigenvalue thus becomes E1,1,1, however
this corresponds to a wave function where the spatial part is fully symmetric while we do not have
a fully anti-symmetric spin wave function. For s123 =

1
2
the spin part is anti-symmetric with respect

to two particles, thus in this case the ground state is

E0 = E1,1,1 + E1,1,1 + E1,1,2 + Eµ
1/2 (29)
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