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Consider a three-dimensional particle whose dynamics is described by the Hamiltonian
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where x1, x2, and x3 are the three components of the position operator for the particle and ~p is the
corresponding vector of momentum operators.

(1) Let us consider a system described by Eq. (1), assuming ω1 = ω2 = ω3 = ω we find

H =
~p2

2m
+

1

2
mω2~x2 =
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which we recognise as the Hamiltonian of a harmonic oscillator in three dimensions, or, alternatively,
three independent one dimensional oscillators. The energy eigenvalue spectrum of a one-dimensional
harmonic oscillator is a well-known result:

En = ~ω
(
n+

1

2

)
. (3)

From this it follows that the eigenvalue spectrum of the Hamiltonian Eq. (2) is

En1,n2,n3 = ~ω
(
n1 + n2 + n3 +

3

2

)
= ~ω

(
N +

3

2

)
, (4)

with N = n1 + n2 + n3.

(2) For a givenN we have n1 ∈ {0, 1, . . . , N}, after choosing a value for n1 we have n2 ∈ {0, 1, . . . , N−n1},
and after choosing a value for n2, n3 = N − n1 − n2 is fixed. Therefore, the degeneracy d of the
Hamiltonian Eq. (2) is

d =
N∑

n1=0

(N−n1 +1) =
N∑

n1=0

(N+1)−
N∑

n1=0

n1 = (N+1)(N+1)− 1

2
N(N+1) =

1

2
(N+1)(N+2). (5)

(3) The ground state of the one-dimensional harmonic oscillator is

u0(x) = N0 exp

(
−x

2mω

2~

)
, (6)

with N0 =
(
mω
π~

) 1
4 . Because the Hamiltonian of our three-dimensional harmonic oscillator is equiva-

lent to that of three independent one-dimensional oscillators, we can write the ground state of the
Hamiltonian Eq. (2) as

ψ0(~x) = u0(x1)u0(x2)u0(x3) = N0 exp

(
−|~x|

2mω

2~

)
. (7)
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(4) Now let us again assume that ω1 = ω2 = ω, but this time ω3 6= ω. In this case the Hamiltonian
becomes

H =
~p2

2m
+

1

2
mω2

(
(x1)2 + (x2)2

)
+

1

2
mω2

3(x3)2, (8)

with the corresponding energy eigenvalue being

En1,n2,n3 = En1,n2 + En3 = ~ω (n1 + n2 + 1) + ~ω3

(
n3 +

1

2

)
, (9)

where En1,n2 = ~ω (n1 + n2 + 1) and En3 = ~ω3

(
n3 + 1

2

)
. From this it immediately follows that the

degeneracy of En1,n2 is d = n1 + n2 + 1, while En3 is non-degenerate. Assuming furthermore that ω
and ω3 are incommensurable, we find the degeneracy of the eigenvalue spectrum of the Hamiltonian
Eq. (8) to be

d = N + 1, (10)

where
N = n1 + n2. (11)

(5) Let us now consider the Hamiltonian H ′ = T−1
3 (δ)HT3(δ), with the Hamiltonian H as in Eq. (8)

and where T3(δ) is the operator that realizes a translation of length δ along the x3 axis. For the
Hamiltonian H ′ we find

H ′ = T−1
3 (δ)HT3(δ), (12)

=
~p2

2m
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1

2
mω2
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)
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1

2
mω2

3(x3 − δ)2. (13)

This has the same form of Eq. (8), except that the oscillator with frequency ω3 is now centered about
δ rather than in the origin. But of course the spectrum of an oscillator does not depend on the point
in space where it is centered, so the spectrum is the same as given in Eq. (9), and the degeneracy is
also the same.

The same result is found simply observing that the operators H and H ′ are unitarily equivalent, and
unitarily equivalent operators have the same spectrum of eigenvalues.

The wave function of the fundamental state of H ′ is

ψ′(~x) = 〈x|T−1
3 (δ)|ψ〉 = u0(x1)u0(x2)u0(x3 − δ). (14)

(6) See section 11.2.4 of the textbook.

(7) In the case where ω1 6= ω2, the Hamiltonian of Eq. (1) can be written as the sum of three commuting
Hamiltonians:
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2
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)
+
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]
, (15)

=
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2m
+

1

2
m
[
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3 (x3)2] , (16)

where x̄1 = (x1 + x2)/
√

2, and x̄2 = (x1 − x2)/
√

2.

From this it follows that the spectrum of the Hamiltonian is simply

En1,n2,n3 = ~ω1

(
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2

)
+ ~ω2
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)
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)
. (17)
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(8) Still in the case in which ω1 6= ω2, we consider the term proportional to x1x2 as a perturbation.
Let us furthermore assume that ω3 � ω1 and ω3 � ω2. Treating the term proportional to x1x2

perturbatively relies on the assumption that |ω2
1 − ω2

2| � ω2
1 + ω2

2.

Let us define

Ω± =
√

(ω2
1 ± ω2

2)/2, (18)

such that the Hamiltonian can be written as

H = H0 + V, (19)

with

H0 =
~p2

2m
+

1

2
m
[
Ω2

+ (x1)2 + Ω2
+ (x2)2 + ω2

3 (x3)2] , (20)

and the term proportional to x1x2:

V =
1

2
m(ω2

1 − ω2
2)x1x2 =

~Ω2
−

2Ω+

(
a1 + a†1

)(
a2 + a†2

)
. (21)

The unperturbed Hamiltonian then concides with that of question (4), with ω = Ω+.

It is clear that the first-order correction for the ground state is zero and thus that for the ground
state we have

E(0) = ~Ω+ +
1

2
~ω3. (22)

The assumption that ω3 � ω1, ω2 implies that the first excited state is that in which the oscillator
with frequency ω3 remains in the ground state, while N = 1, with N defined in Eq. (11). This first
excited state is therefore doubly degenerate and we have that

〈N = 1|V |N = 1〉 , (23)

=

〈
N = 1

∣∣∣∣~Ω2
−

2Ω+

(a1 + a†1)(a2 + a†2)

∣∣∣∣N = 1

〉
, (24)

=
~Ω2
−

2Ω+

(
0 1
1 0

)
, (25)

where by |N = 1〉 we have denoted a two-component state vector in the subspace of degenerate
states, which we have evaluated in the basis

|N = 1〉 =

(
|n1 = 1, n2 = 0〉
|n1 = 0, n2 = 1〉

)
. (26)

The eigenvalues of Eq. (25) can easily be obtained, from which it then follows that for the first
excited state we have

E(1) = 2~Ω+ +
1

2
~ω3 + ∆E = 2~Ω+ +

1

2
~ω3 ±

~Ω2
−

2Ω+

. (27)

(9) The unitary transformation that realizes the change of coordinates in exercise (7) can be understood
as a rotation by an angle π/4 in the (x1, x2) plane. Once this is appreciated, the Hermitian operator
that generates this transformation can be written as

Rπ/4 = exp

(
− i
~
π

4
(x1p2 − x2p1)

)
(28)

= exp

(
− i
~
π

4
Lz

)
(29)

= exp

(
π

4

∂

∂φ

)
, (30)

where φ is the polar angle in the (x1, x2) plane.
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(10) The exact result for the energy spectrum is given in Eq. (17). From this expression we find that the
energy eigenvalue of the ground state is

E0,0,0 =
1

2
~ (ω1 + ω2 + ω3) , (31)
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2
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While that of the first excited state is
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−
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and

E1,0,0 ≈ 2~Ω+ +
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+
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2
~ω3 +O

(
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−

Ω+

)
, (37)

thus showing equivalence between the results of exercises (7) and (8) for a first order perturbation

where the perturbation parameter is proportional to
Ω2

−
Ω+

.

(11) The eigenvalue spectrum is the same as for a single three-dimensional particle and is given by
Eq. (4), but with the extra condition N ≥ 3 because the ground state is the lowest state such that
n1 6= n2 6= n3.

For a system of three fermions in a single dimension, and with the fermions in the same spin state,
the spatial part of the wave function must be fully antisymmetric. As a result of this, the ground
state energy eigenvalue is E0,1,2 and also non-degenerate, the energy eigenvalue of the first excited
state is E0,1,3 and non-degenerate, and finally, the energy eigenvalue of the second excited state is
E0,2,3 = E0,1,4 and doubly degenerate. Indeed, note that antisimmetrization removes exchange degen-
eracy, so energy levels Eijk that differ by a permutation of the indices ijk are no longer degenerate.
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