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Consider a theory given by the following Lagrangian:

L = −1

4
FµνF

µν +
1

2

(
∂µφ∂

µφ−m2
sφ

2
)

+ ψ̄(i6 ∂ −mf )ψ +
g

4
φFµνF

µν − g′ψ̄γµψBµ, (1)

where Fµν = ∂[µAν] is the Maxwell field tensor, φ is a real scalar field, ψ is a Dirac fermion
field and Bµ is an external vector field.

(1) Let us first write down the Feynman rules for this theory.

(a) The Feynman rules for the external lines can be derived by acting the fields
on the initial- and final-state particles.

φ|s(p)〉 =
p

= 1 〈s(p)|φ =
p

= 1

ψ|f(p, s)〉 =
p

= us(p) 〈f(p, s)|ψ̄ =
p

= ūs(p)

ψ̄|f̄(p, s)〉 =
p

= v̄s(p) 〈f̄(p, s)|ψ =
p

= vs(p)

Aµ|γ(p, s)〉 =
p

= εµ(p, s) 〈γ(p, s)|Aµ =
p

= ε∗µ(p, s)

Bµ|v(p, s)〉 =
p

= εµ(p, s) 〈v(p, s)|Bµ =
p

= ε∗µ(p, s).

(b) The propagators can be computed by contracting the fields.

Scalar :
p

=
i

p2 −m2 + iε
(2)

Photon :
µ νp

= − i

p2 + iε

[
gµν − (1− ξ)pµpν

p2

]
. (3)

In the expression of the photon propagator, ξ parametrizes a set of covariant
gauges. The Feynman gauge ξ = 1 is considered as a correct solution.
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(c) The interaction terms in the Lagrangian introduces the following vertices:

µ k

p1

p2

= −ig′γµ (4)

k

p1, µ

p2, ν

= −ig ((p1p2)g
µν − pµ1pν2) (5)

The coupling g′ is dimensionless, but the coupling g has a dimension of [m]−1 and
the theory is thus nonrenormalizable

(2) The energy-momentum tensor of the theory can be written as:

T µν =
∂L

∂(∂µAλ)
∂νAλ +

∂L
∂(∂µφ)

∂νφ+
∂L

∂(∂µψ)
∂νψ − δµνL (6)

= −(1− gφ)F µλ∂νAλ + ∂µφ∂νφ− iψ̄γµ∂νψ − δµνL. (7)

From this, we can now derive the Hamiltonian density which is defined as H = T 00,

H = −(1− gφ)F 0λȦλ + φ̇2 − iψ†ψ̇ − g00L (8)

=
1

2

(
φ̇2 + ~∇φ · ~∇φ+m2

sφ
2
)

+ iψ̄~γ · ~∇ψ +mf ψ̄ψ + (1− gφ)
(
F µνFµν − F 0µȦµ

)
.

(9)

A simpler form of the electromagnetic contribution to the energy-momentum ten-
sor can be obtained through the Belinfante construction, which then leads to
the covaraint result T µν = F µαFνα − 1

4
F µνFµν , leading to the Hamiltonian H =

1
2

(
~E2 + ~B2

)
.

(3) Let us now compute the unpolarized squared amplitude for the process γ(p1) +
γ(p2)→ φ(k). The lowest non-trivial diagram is given by:

k

γ(p1, s1), εµ

γ(p2, s2), εν

= iM1(γγ → φ). (10)

Using the Feynman rules derived in the previous section, we have:

iM1(γγ → φ) = −(ig)εµ(p1)εν(p2)M
µν , (11)
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where Mµν = (p1p2)g
µν − pµ1pν2. Hence, squaring the above amplitude yields,

|M1(γγ → φ)|2 = g2εµ(p1)εν(p2)ε
∗
ρ(p1)ε

∗
β(p2)M

µνMρβ. (12)

Averaging over the initial states and summing over the polarizations using the
identity, we have

|M̄1(γγ → φ)|2 =
1

4

∑
pol.

|M1(γγ → φ)|2 (13)

=
g2

4
gµρgνβMµνMρβ (14)

=
g2

4
MµνMµν (15)

=
g2

2
(p1 · p2)2. (16)

In terms of the Mandelstam variables, the unpolarized squared amplitude is given
by the following

|M̄1(γγ → φ)|2 =
g2

8
s2. (17)

(4) In order to compute the cross-section of the production of a scalar field from an
annihilation of two photons, let us first derive the 1-body phase space given by the
following expression:

dΦ(γγ → φ) =
d3k

(2π)32Ek
(2π)4δ(4)(p1 + p2 − k). (18)

Integrating over k in the center of mass of the two colliding photons yields

dΦ(γγ → φ) =
π

ms

δ(
√
s−ms) (19)

= 2πδ(s−m2
s). (20)

On the other hand, the flux is given by:

F(γγ → φ) = 4(p1 · p2) = 2s. (21)

Combining all these results, one can finally derive the final expression of the cross
section given as

σ(γγ → φ) =
g2

8
m2
sπδ(s−m2

s). (22)

(5) The lowest perturbative order of the process f(p1) + f̄(p2)→ B(k) is given by the
following diagram:

µ k

f(p1, s1)

f(p2, s2)

= iM2(ff̄ → B), (23)
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where the amplitude is expressed as

iM2(ff̄ → B) = (−ig′)ε∗µ(p1)u(p1)γ
µv̄(p2). (24)

Hence, taking the square of the above amplitude yields,

|M2(ff̄ → B)|2 = (g′)2ε∗µ(p1)εν(p1) (u(p1)γ
µv̄(p2)v(p2)γ

ν ū(p1)) . (25)

Averaging over the initial state and summing over the polarization of the final states
leads to the following results,

|M̄2(ff̄ → B)|2 = −(g′)2

4
u(p1)γ

µv̄(p2)v(p2)γµū(p1) (26)

= −(g′)2

4
Tr
(

(/p1 +mf )γ
µ(/p2 −mf )γµ

)
(27)

=
(g′)2

2

(
Tr(/p1/p2) + 8m2

f

)
(28)

= 2(g′)2
(
(p1p2) + 2m2

f

)
, (29)

where in the second line, we have used the fact that γµγµ = 4 and γµ/p2γµ = −2/p2.
Expressed in terms of the Mandelstam variables, we get

|M̄2(ff̄ → B)|2 = (g′)2
(
s+ 2m2

f

)
. (30)

The Lorentz invariant phase space is the same as in question(4)

dΦ(ff̄ → B) = 2πδ(s−m2
B) (31)

while the flux factor is now

F(ff̄ → B) = 4E22

√
E2 −m2

f

2E
= 2s

√
1− 4m2

s
, (32)

where E =
√
s/2 is the energy of the incoming (massive) fermions. The total cross

section is therefore given by,

σ = (g′)2
(

1 +
2m2

f

s

)
1√

1− 4m2

s

πδ(s−m2
B). (33)

(6) Both processes are 2 → 1. Hence the cross-section can depend on 9 momentum
components, minus six Lorenz conditions, giving three scalar products: p1 ·p2, p1 ·k,
p2 · p2. Momentum conservation then expresses all these scalar productes in terms
of a single one (which can be taken to be the Mandelstam invariant s). However,
because there are four momentum conservation conditions and only three scalar
products, the system is overconstrained, and the cross-section does not depend
on any kinematic variable, rather, it constrains the remaining scalar product in
terms of a mass through a delta function. Hence, the fact that the cross-section
is proportional to a delta of s − m2 could be established without performing any
calculation. Furthermore, the fact that the cross-section Eq. (22) is proportional to
g2m2

s follows from dimensional analysis, recalling that the constant g has dimensions
of mass−1, and so does the fact that the cross-section Eq. (33) is proportional to

the dimensionless g2, up to corrections of order
m2

f

s
.

4



(7) Assuming that each of the two photons in (5) is part of a flux of incoming fermions
with momentum pi = xipmax, and defining

σ0 = (g′)2
(

1 +
2m2

f

s

)
1√

1− 4m2

s

π, (34)

and

τ =
(m2

B − 2m2
f )

pmax
1 · pmax

2

(35)

the cross section is

σ = σ0

∫ 1

0

dx1

∫ 1

0

dx2p(x1)p(x2)δ
(
x1x2p

max
1 · pmax

2 − (m2
B − 2m2f)

)
= σ0

∫ 1

0

dx1

∫ 1

0

dx2p(x1)p(x2)δ(x1x2 − τ) (36)

= σ0

∫ 1

τ

dx2
x2

p

(
τ

x2

)
p(x2).
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