Solution of the exam of Theoretical Physics of January 23 2024

Real scalar field:

Spinor field:

1. The energy-momentum tensor is defined as
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2. The only internal symmetry of the theory is
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The classical conserved charge is
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In order to write thecharge in terms of creation and annihilation operators we insert Eq. in Eq. , finding
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Integrating over d°z we get a delta that remove one of the integrals over momentum and therefore we find
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Using
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where we have anticommuted b;T and b, at the cost of removing an infinite constant.
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4. The diagrams that contribute to the process f(p1)f(p2) — f(p3)f(ps) at leading order are
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Note that with the Lagrangian written as in the assigment the mass parameter (with dimension [E]) is actually /m.
(No penalty is given to those who overlooked this point). The relative sign between the two diagrams is a minus since
to obtain the second one from the first one we have to exchange an antifermion from one bilinear with a fermion from
the other bilinear.

Applying the Feynman rules it is easy to find
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5. We have to compute the modulus squared of the unpolarized amplitude. Using
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since the fermion is massless, and averaging over initial polarizations, we obtain
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In the first two lines of Eq. the terms proportional to a? don’t have any s, the terms in ab cancel due to the
property
Tr (yuyys5) =0, (31)

while in the term proportional to % we have a structure of the form
Tr (vuys7eys) = =Tr () - (32)

Coming now to the last two lines, we note that the traces are of the form
Tr (" (a 4 bys)vY (a + bys)y?(a + bys)v7 (a + bys)). Consider terms with one single ~5: there are four, according to the
four possible positions of the vertex with 5. They cancel in pairs, because
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The same applies to terms with three 5 matrices: there are four, according to the four possible positions of the vertex
without 75, and they cancel in pairs, because
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This proves that all terms with an odd number of 5 matrices cancel or vanish.
The third line of Eq. thus reduces to
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The fourth line of Eq. is obtained from the third one exchanging p; <> po and ps <> p4, so we finally get
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6. Using the trace properties of the gamma matrices we find
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7. Defining Mandelstam variables as
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Eq. can be rewritten as
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where in the last step we used the property s + ¢ + u = 0, since the fermions are massless.

8. We have to compute the unpolarized modulus squared of the amplitude in two cases:

e p3 = p; and py = po: In this case we have that the Mandelstam variables b
t=0, u=(p1—p2)°=—2p1-pa=—

Eq. becomes
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e p3 = py and py = p3: In this case we have that the Mandelstam variables b

Eq. becomes

P— 2 2

ecome

S.

(s —m)? "

ecome

2s—m2Z  2i—m)? T As—m)i—m)

|\

Y IMP =g (a—b)*(a+b)?

Therefore, we find that
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