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1. We start by determining the dimension of the coupling constant g for the Lagrangian

L =
1

2
(∂µφ∂

µφ) + ψ̄
(
i/∂ −m

)
ψ + gψ̄γµγ5ψ∂µφ. (1)

By looking at the free terms of the lagrangian we determine the dimension of φ, dim (φ) = 1
and of ψ, ψ̄, dim

(
ψ, ψ̄

)
= 3

2 . Therefore the dimension of g is equal to
[
1
m

]
, the inverse of

a mass.

We can list now the Feynman rules for this theory:
i

p2 + iε
(2)

i
(
/p+m

)
p2 −m2 + iε

(3)

− g/pγ5 (4)

where in the vertex we consider the momentum p flowing outwards.

2. The transition matrix e;ement, at first order in the coupling, for the process

f (p1) + f̄ (p2)→ φ (p3) + φ (p4) (5)

is given by the two diagrams in Fig. 2. The two corresponding matrix elements are

Figura 1: Diagrams contributing to process Eq. (5)
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respectively:

iMt = ig2v̄ (p2) /p4γ
5

(
/p1 − /p3 +m

)
t−m2 /p3γ

5u (p1) , (6)

iMu = ig2v̄ (p2) /p3γ
5

(
/p1 − /p4 +m

)
u−m2 /p4γ

5u (p1) . (7)

These can be simplified using the Dirac equation and the commutator suggested in the
assignment

/p/q = 2 (p · q)− /q/p. (8)

We obtain:

iMt = ig2v̄ (p2) /p4γ
5 /p1 − /p3 +m

t−m2 /p3γ
5u (p1)

= ig2v̄ (p2) /p4γ
5
2 (p1 · p3) + 2m/p3

t−m2
γ5u (p1)

= −ig2v̄ (p2) /p4

[
1 +

2m/p3
t−m2

]
u (p1) (9)

iMu = ig2v̄ (p2) /p3γ
5 /p1 − /p4 +m

u−m2 /p4γ
5u (p1)

= ig2v̄ (p2) /p3γ
5
2 (p1 · p4) + 2m/p4

u−m2
γ5u (p1) (10)

= −ig2v̄ (p2) /p3

[
1 +

2m/p4
u−m2

]
u (p1) (11)

where have introduced the Mandelstam invariants

t−m2 = −2 (p1 · p3) u−m2 = −2 (p1 · p4) . (12)

The total amplitude is

iM = −ig2v̄ (p2)

[(
/p3 + /p4

)
+ 2m

(
/p4/p3
t−m2

+
/p3/p4
u−m2

)]
u (p1) (13)

which can be further simplified by using the fact that

v̄ (p2)
[
/p3 + /p4

]
u (p1) = v̄

[
/p2 + /p1

]
u (p1) = v̄ (p2) [m−m]u (p1) = 0. (14)

We finally obtain the result quoted in the text:

iM = −2mig2v̄ (p2)

[
/p4/p3
t−m2

+
/p3/p4
u−m2

]
u (p1) . (15)
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3. The sum over final polarizations and the average over initial polarizations of the squared
modulus of the matrix element Eq. (15) is

1

4

∑
s

|M|2 = m2g4Tr

((
/p1 +m

)[ /p3/p4
t−m2

+
/p4/p3
u−m2

](
/p2 −m

)[ /p4/p3
t−m2

+
/p3/p4
u−m2

])

= m2g4

{
1

(t−m2)2
Tr
((
/p1 +m

)
/p3/p4

(
/p2 −m

)
/p4/p3

)
+

1

(u−m2)2
Tr
((
/p1 +m

)
/p4/p3

(
/p2 −m

)
/p3/p4

)
+

1

(u−m2) (t−m2)

[
Tr
((
/p1 +m

)
/p4/p3

(
/p2 −m

)
/p4/p3

)
+ Tr

((
/p1 +m

)
/p3/p4

(
/p2 −m

)
/p3/p4

) ]}

= m2g4

{
1

(t−m2)2

[
Tr
(
/p1/p3/p4/p2/p4/p3

)]
+

1

(u−m2)2

[
Tr
(
/p1/p4/p3/p2/p3/p4

)]
+

1

(u−m2) (t−m2)

[ (
Tr
(
/p1/p4/p3/p2/p4/p3

)
−m2Tr

(
/p4/p3/p4/p3

))
+
(

Tr
(
/p1/p3/p4/p2/p3/p4

)
−m2Tr

(
/p3/p4/p3/p4

)) ]}

= m2g4

{
1

(t−m2)2

[
2 (p2 · p4) Tr

(
/p1/p3/p4/p3

)]
+

1

(u−m2)2

[
2 (p2 · p3) Tr

(
/p1/p4/p3/p4

)]
+

1

(u−m2) (t−m2)

[ (
−Tr

(
/p1/p4/p3/p4/p2/p3

)
− 2m2 (p3 · p4) Tr

(
/p4/p3

))
+
(
−Tr

(
/p1/p3/p4/p3/p2/p4

)
− 2m2 (p3 · p4) Tr

(
/p3/p4

)) ]}

= m2g4

{
1

(t−m2)2
[16 (p2 · p4) (p3 · p4) (p1 · p3)] +

1

(u−m2)2
[16 (p2 · p3) (p3 · p4) (p1 · p4)]

+
1

(u−m2) (t−m2)

[ (
−2 (p3 · p4) Tr

(
/p1/p4/p2/p3

)
− 8m2 (p3 · p4)2

)
+
(
−2 (p3 · p4) Tr

(
/p1/p3/p2/p4

)
− 8m2 (p3 · p4)2

) ]}

= 16m2g4

{
1

(t−m2)2
[(p2 · p4) (p3 · p4) (p1 · p3)] +

1

(u−m2)2
[(p2 · p3) (p3 · p4) (p1 · p4)]

− 1

(u−m2) (t−m2)

[
(p3 · p4) ((p1 · p4) (p2 · p3)− (p1 · p2) (p3 · p4) + (p1 · p3) (p2 · p4))

+m2 (p3 · p4)2
]}
. (16)

The final result Eq. (16) can be written in terms of Mandelstam invariants using

(p1 · p2) =
s− 2m2

2
(p3 · p4) =

s

2
(17)

(p1 · p3) = (p2 · p4) =
m2 − t

2
(18)

(p1 · p4) = (p2 · p3) =
m2 − u

2
. (19)
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We get

1

4

∑
s

|M|2 = 16m2g4

{
1

(t−m2)2
[(p2 · p4) (p3 · p4) (p1 · p3)] +

1

(u−m2)2
[(p2 · p3) (p3 · p4) (p1 · p4)]

− 1

(u−m2) (t−m2)

[
(p3 · p4) ((p1 · p4) (p2 · p3)− (p1 · p2) (p3 · p4) + (p1 · p3) (p2 · p4))

+m2 (p3 · p4)2
]}

= 16m2g4

{
1

(t−m2)

[
s

2

(
t−m2

)2
4

]
+

1

(u−m2)

[
s

2

(
u−m2

)2
4

]

− 1

(u−m2) (t−m2)

[
s

2

((
m2 − u

)2
4

− s

2

(
s− 2m2

)
2

+

(
m2 − t

)2
4

)
+m2 s

2

4

]}

= 2sm2g4

{
s2 − (t− u)2 − 4m2s

(u−m2) (t−m2)

}
(20)

This result can be rewritten in various equivalent forms. A particularly simple one is

1

4

∑
s

|M|2 = 8sm2g4

{
1− m2s

(u−m2) (t−m2)

}
(21)

where we used the fact that

s2 − (u− t)2 = (s+ t− u) (s+ u− t) =
(
2m2 − 2u

) (
2m2 − 2t

)
= 4

(
t−m2

) (
u−m2

)
.

(22)

4. In the center-of-mass frame the kinematics can be written as

p1 =
(√

p2 +m2, 0, 0, p
)
, (23)

p2 =
(√

p2 +m2, 0, 0,−p
)
, (24)

p3 =
(
p′, 0, 0, p′

)
, (25)

p4 =
(
p′, 0, 0,−p′

)
(26)

with
p =

√
s

2
β (27)

and

β =

√
1− 4m2

s
. (28)

The phase-space for the process Eq. (5) is then

dΦ =
dp′d cos θdφ

16π2
δ
(√
s− 2p′

)
=
d cos θ

16π
(29)

with the constraint p′ =
√
s
2 .

In order to obtain the differential cross section we first rewrite the square amplitude in
terms of center-of-mass variables. Specifically, we use

t−m2 = −2 (p1 · p3) = −s
2

(1− β cos θ) (30)

u−m2 = −2 (p1 · p3) = −s
2

(1 + β cos θ) (31)
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to rewrite Eq. (20) as:

1

4

∑
s

|M|2 = 8sm2g4

{
1− 1− β2

1− β2 cos2 θ

}
(32)

with .

The flux factor is
4

√
(p1 · p2)2 −m4 = 2sβ (33)

and the differential cross-section is

dσ

d cos θ
=
m2g4

4πβ

{
1− 1− β2

1− β2 cos2 θ

}
. (34)

5. The theory is not renormalizable because the coupling g has negative dimensions of mass.
A one-loop correction to the interaction (vertex correction) is proportional to g3 and thus
its renormalization requires in general the inclusion of all interactions with couplings with
dimension

[
1
m3

]
.

We seek all Lorentz invariant terms with dimension five, i.e.
[
m5
]
. Lorentz invariant

interactions must be built out of fermion bilinears, with dimension
[
m3
]
, the scalar field,

with dimension [m], and derivatives, with dimension [m]. Two fermion bilinears have
dimension six (

[
m6
]
) which requires a coupling with dimension

[
m2
]
or higher, so at most

one fermion bilinear is allowed.

Therefore, only interactions with either zero or one fermion bilinears are allowed.

With one fermion bilinear, we can have either a scalar or a pseudoscalar and two powers of
the scalar field, or a vector or a pseudovector contracted with a derivative and one power
of the scalar field. The latter contribution is the only one which is already included in the
given Lagrangian.

With zero fermion bilinears we can have only powers of the scalar field and derivatives. A
Lorentz-invariant combination of derivatives of the scalar field can be built with an even
number of derivatives. Therefore, the possible dimension five interactions have either five
powers of the field, or three powers and two derivatives, or one power and four derivatives.
A term with only one power of the field gives rise to no interaction.

Summarizing, the most general lagrangian is

L =g1ψ̄ψφ
2 + g′1ψ̄γ5ψφ

2 + g2ψ̄γ
µψ∂µφ+ g′2ψ̄γ

µγ5ψ∂µφ (35)

+ λ1φ
5 + λ2φ∂µφ∂

µφ. (36)

The only interaction included in the given Lagrangian is that proportional to g′2. All the
others would be generated upon renormalization.

6. In the limit m → 0, the differential cross section vanishes. This can be understood
by examining the symmetries of the Lagrangian and the associated conserved Noether
currents.

When m 6= 0 the Lagrangian is invariant under the U (1)V transformation

ψ → ψ′ = eiαψ. (37)

The conserved Noether current is the vector current

JµV = ψ̄γµψ; ∂µJ
µ
V = 0. (38)

When m = 00 the Lagrangian is also invariant under the U (1)A transformation

ψ → ψ′ = eiαγ5ψ. (39)
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The conserved Noether current is the axial current

JµA = ψ̄γµγ5ψ; ∂muJ
µ
A = 0. (40)

In the latter case, using the conservation law

∂µJµA = 0 (41)

and integrating by parts the interaction we get

LI = ψ̄γµγ5ψ∂µφ = ∂µJ
µ
Aφ = 0 (42)

so the interaction term vanishes.

Note that this means that the interaction term proportional to g2 in Eq. (35) actually
vanishes.
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