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Consider a theory of a Dirac fermion f and a real scalar s, with field ψ and φ respectively,
given by the following Lagrangian:

L = Lscalar + LDirac + Lint. (1)

The Lagrangian of the scalar part is given by

Lscalar =
1

2

(
∂µφ∂

µφ−M2φ2
)
, (2)

where the field φ is defined as follows

φ(~x, t) =

∫
d3p

(2π)3
√

2Ep

{
a~p e−ip

µxµ + a†~p eip
µxµ
}
, (3)

with the commutation relation:

[a~p, a
†
~k
] = (2π)3δ(3)(~p− ~k). (4)

The fermion part is given by
LDirac = ψ̄(i6 ∂ −m)ψ, (5)

where the field ψ is defined as follows

ψ(~x, t) =

∫
d3p

(2π)3
√

2Ep

∑
s

{
bs~pu

s(p)e−ip
µxµ + cs

†

~p v
s(p)eip

µxµ
}
, (6)

with the following anti-commutation relation:

{bs~p, br
†

~k
} = {cs~p, cr

†

~k
} = (2π)3δsrδ(3)(~p− ~k). (7)

Finally, the Lagrangian of the interatcion is given by the Yukawa,

Lint = gψ̄ψφ. (8)

(1) For this theory, the energy-momentum tensor is given by:

T µν =
∂L

∂(∂µφ)
∂νφ+

∂L
∂(∂µψ)

∂νψ + δµνL (9)

= ∂µφ∂νφ+ iψ̄γµ∂νψ − δµνL. (10)

(2) According to Noether’s theorem, a conservation law is associated with a symmetry.
One can, indeed, straightforwardly check that the Lagrangian is invariant under the
following transformation:

ψ −→ ψ
′
= e−iqψ. (11)

The associated symmetry transformations form the group U(1). (Not requested for
full grades)
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The corresponding Noether current is

J µ =
LDirac

∂(∂µψ)
∆ψ with

LDirac

∂(∂µψ)
= iψ̄γµ, (12)

∆ψ can be determined from an infinitesimal transformation

ψ −→ ψ + ∆ψ, ∆ = −iqψ. (13)

Combining this result to the ones in Eq. (12), we finally have

J µ = qψ̄γµψ. (14)

(3) Now, let us compute the expression of the conserved charge corresponding to the
previous Noether’s current and express it in terms of the creation and annihilation
operators. The Dirac charge operator is given by

Q =

∫
d3xJ 0(x) = q

∫
d3xψ†(x)ψ(x) (15)

Expanding the above expression, we have the following

Q = q

∫
d3p

(2π)3
√

2Ep

∑
r,s

{
br

†

~p b
s
~pu

r†(p)us(p) + cr−~pc
s†

−~pv
r†(−p)vs(−p)

}
(16)

= q

∫
d3p

(2π)3

∑
s

(
bs

†

~p b
s
~p + cs−~pc

s†

−~p

)
(17)

= q

∫
d3p

(2π)3

∑
s

(
bs

†

~p b
s
~p − cs

†

~p c
s
~p

)
. (18)

In order to get the first line, we integrated over x then over the second momentum.
From the first to the second line, we used the fact that ur

†
(p)us(p) = vr

†
(p)vs(p) =

2Epδ
rs. Notice that by symmetry cs−~pc

s†

−~p = cs~pc
s†

~p . To get to the last line, we wrote

cs~pc
s†

~p in terms if its anti-commutation.

(4) Let us now write down the Feynman rules of the theory.

(a) External lines: the Feynman rules for the external lines can be obtained by
acting the fields on the initial and final-state particles.

φ|s(p)〉 =
p

= 1 〈s(p)|φ =
p

= 1

ψ|f(p, s)〉 =
p

= us(p) 〈f(p, s)|ψ̄ =
p

= ūs(p)

ψ̄|f̄(p, s)〉 =
p

= v̄s(p) 〈f̄(p, s)|ψ =
p

= vs(p)
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(b) The propagators can be computed from the contracted fields.

φ(x)φ(y) =
p

=
i

p2 −M2 + iε
(19)

ψ(x)ψ(y) =
p

=
i(6 p+m)

p2 −M2 + iε
(20)

(c) Finally, the scalar-fermion vertex is given by

= −ig (21)

It can be seen from the Lagrangian that the coupling g is dimensionless and therefore
the theory is renormalizable. Indeed, considering ~ = c = 1, we know that the
Lagrangian has dimension [E]4 while ψ and ψ̄ have each dimension [E]3/2, and φ
has dimension [E].

(5) In this section, we are going to compute the modulus square of the unpolarized
amplitude for the process fs → fs. As shown in Fig. 1, two diagrams contribute
to such process.

f(p1, s1)

s(p2)

f(p3, s3)

s(p4)

p1 + p2

Ms

p1 − p4

f(p1, s1)

s(p2)

f(p3, s3)

s(p4)

Mu

Figure 1: Leading non-vanishing diagrams for fs→ fs.

Using the Feynman rules from the previous section, each diagram in the above
figure can be mathematically expressed as follows:

iMs(fs→ fs) = i(ig)2ū(p3)

(
6 p1 + 6 p2 +m

(p1 + p2)2 −m

)
u(p1) (22)

iMu(fs→ fs) = i(ig)2ū(p3)

(
6 p1 −6 p4 +m

(p1 − p4)2 −m

)
u(p1) (23)

From these expressions, one can notice that the two amplitudes are related by
symmetry–to be precise by a swap of p2 and −p4. For simplicity, let us define the
following quantity:

M =
6 p1 + 6 p2 +m

(p1 + p2)2 −m
+
6 p1 −6 p4 +m

(p1 − p4)2 −m
(24)

=
6 p2 + 2m

s−m2
− 6 p4 − 2m

u−m2
, (25)
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where in the last line we have introduced the Mandelstam variables. It then follows
that the total amplitude can be written as:

M(fs→ fs) =Ms(fs→ fs) +Mu(fs→ fs) = −g2ū(p3)Mu(p1). (26)

In order to derive the expression of the amplitude square, one has to compute the
complex conjugate of Eq. (26):

M∗(fs→ fs) = −g2 [u(p3)]
T (γ0)∗M∗u∗(p1) (27)

= −g2u†(p1)M†γ0u(p3) (28)

= −g2ū(p1)Mu(p3). (29)

The square modulus of the amplitude is

|M(fs→ fs)|2 = g4ūα(p3)Mαβuβ(p1)ūγ(p1)Mγσuσ(p3) (30)

= g4 [uσ(p3)ūα(p3)] Mαβ [uβ(p1)ūγ(p1)] Mγσ (31)

= g4Tr {[u(p3)ū(p3)] M [u(p1)ū(p1)] M} . (32)

Summing over the polarization of the final state and averaging over the polarization
of the initial state we get

|M(fs→ fs)|2 =
1

2

∑
s1

∑
s3

|M(fs→ fs)|2. (33)

Expanding the right-hand side of this equation and invoking the spinor completeness
relation, it follows that:

|M(fs→ fs)|2 =
g4

2
Tr [(6 p3 +m) M (6 p1 +m) M] . (34)

One can notice that the above expression is purely expressed in terms of a trace
over gamma matrices. Expanding this expression will give rise to four terms:

ξs,s =
g4

(s−m2)2
ξ̃s,s, ξ̃s,s =

1

2
Tr [(6 p3 +m)(6 p2 + 2m)(6 p1 +m)(6 p2 + 2m)] (35)

ξu,u =
g4

(u−m2)2
ξ̃u,u, ξ̃u,u =

1

2
Tr [(6 p3 +m)(6 p4 − 2m)(6 p1 +m)(6 p4 − 2m)] (36)

ξs,u = − g4

χ(s, u,m)
ξ̃s,u, ξ̃s,u =

1

2
Tr [(6 p3 +m)(6 p2 + 2m)(6 p1 +m)(6 p4 − 2m)] (37)

ξu,s = − g4

χ(s, u,m)
ξ̃u,s, ξ̃u,s =

1

2
Tr [(6 p3 +m)(6 p4 − 2m)(6 p1 +m)(6 p2 + 2m)] (38)

where χ(s, u,m) = (s − m2)(u − m2). Since, s- and u-channel are related by
symmetry, one only has to compute two of the expressions above, namely ξs,s and
ξs,u, and get the remaining expressions by swapping p2 and −p4 or s and u.
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When expressed in terms of the Mandelstam variables and the masses of the parti-
cles, the scalar products can be written as:

2(p1p3) = 2m2 − t, (39)

2(p2p4) = 2M2 − t, (40)

2(p1p2) = 2(p3p4) = s−m2 −M2, (41)

2(p2p3) = 2(p1p4) = m2 +M2 − u. (42)

Expanding Eq. (35) and (37) and computing the traces one finds,

ξ̃s,s = (9s+ u)m2 − us+ 7m4 − 8m2M2 +M4, (43)

ξ̃s,u = −3(u+ s)m2 − us− 9m4 + 8m2M2 +M4. (44)

Recall that ξ̃u,u = ξ̃s,s(s↔ u) and in the same way ξ̃s,u = ξ̃u,s(s↔ u).

Combining all these results, we can finally write down the final expression of the
amplitude square, given as

|M(fs→ fs)|2 = g4

[
ξ̃s,s

(s−m2)2
+

ξ̃u,u
(u−m2)2

− 2ξ̃s,u
(s−m2)(u−m2)

]
. (45)

(6) In the case where m = M = 0 (massless fermions), the free theory exhibits the
symmetry defined by the transformation

ψL −→ eiθLψL and ψR −→ eiθRψR, (46)

in which ψL and ψR are rotated by two independent angles θL and θR respectively.
This is called chiral symmetry. However, the coupling term has exactly the same
form as a mass term, and thus breaks this symmetry even when the masses vanish,
unless the coupling g also vanishes.

Therefore, with m = M = g = 0 the group of symmetry is enlarged from U(1) to
U(1)× U(1), but when g 6= 0 the internal symmetries of the theory are unchanged
even with vanishing masses.

(7) Let us finally compute the trace of the energy-momentum tensor of the theory and
show that the energy-momentum tensor is traceless for a particular choice of M,m
and g of the theory. Following Eq. (10), the trace of the energy-momentum tensor
can be written as

T µµ = ∂µφ∂µφ+ iψ̄6 ∂ψ − 4L (47)

= −∂µφ∂µφ− 3iψ̄6 ∂ψ + 2M2φ2 + 4mψ̄ψ − 4gφψ̄ψ. (48)

From the first to the second line, we just expanded the expression.

The equations of motion for the scalar and fermion fields are respectively given by

∂µ
L

∂(∂µφ)
=
∂L
∂φ

=⇒ (� +M2)φ− gψ̄ψ = 0 (49)

∂µ
L

∂(∂µψ̄)
=
∂L
∂ψ̄

=⇒ (i6 ∂ −m+ gφ)ψ = 0. (50)
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The first term in the second line of Eq. (48) can be simplified further by doing an
integration by parts: this corresponds to adding a total derivative, which is allowed
because Noether currents are only defined up to a total derivative which does not
change the conserved charge. We get

T µµ = φ�φ− 3iψ̄6 ∂ψ + 2M2φ2 + 4mψ̄ψ − 4gφψ̄ψ (51)

= −3gφψ̄ψ +M2φ2 − 3iψ̄6 ∂ψ + 4mψ̄ψ (52)

= mψ̄ψ +M2φ2. (53)

To go from the first to the second line, we used the equation of motion for the
scalar field φ, while we used the equation of motion for the fermion field ψ̄ to go
from the second to the third line. From the last line, it can be clearly seen that the
energy-momentum is traceless for m = M = 0.

So when the masses vanish not only the internal symmetries but also the space-time
symmetries are greater. The vanishing of the energy momentum tensor follows from
the conservation of the Noether current associated to invariance upon dilatations,
i.e. rescaling of all coordinates.
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