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Consider a theory which involves two Dirac fermions represented by the fields ψ1 and
ψ2, and a real scalar with field φ given by the following Lagrangian:

L = Lscalar + Lfermion + Lint. (1)

The Lagrangian of the scalar part is given by

Lscalar =
1

2

(
∂µφ∂

µφ−m2φ2
)
, (2)

where the field φ is defined as follows

φ(~x, t) =

∫
d3p

(2π)3
√

2Ep

{
a~p e−ip

µxµ + a†~p eip
µxµ
}
, (3)

withe the annihilation and creation operators satisfying the commutation relation:

[a~p, a
†
~k
] = (2π)3δ(3)(~p− ~k). (4)

The free fermion part is given by

Lfermion =
∑
i=1,2

ψ̄i(i6 ∂ −mi)ψi, (5)

where a field ψi is defined as follows

ψi(~x, t) =

∫
d3pi

(2π)3
√

2Ep

∑
s

{
bs~p u

s
i (p)e

−ipµxµ + cs
†

~p v
s
i (p)e

ipµxµ
}
, (6)

with the annihilation and creation operators satisfying the anticommutation relation:

{bs~p, br
†

~k
} = {cs~p, cr

†

~k
} = (2π)3δsrδ(3)(~p− ~k). (7)

Finally, the Lagrangian of the interaction is given by:

Lint = ig
∑
i=1,2

ψ̄iφψi. (8)

(1) The energy-momentum tensor for this theory is given by:

T µν =
∂L

∂(∂µφ)
∂νφ+

∂L
∂(∂µψ1)

∂νψ1 +
∂L

∂(∂µψ2)
∂νψ2 − δµνL (9)

= ∂µφ∂νφ+ iψ̄1γ
µ∂νψ1 + iψ̄2γ

µ∂νψ2 − δµνL. (10)

(2) For fermions, the electric charge is always conserved, and according to the Noether’s
theorem a conservation law is always associated with a symmetry. Let us write down
the transformations that leave the Lagrangian invariant and derive the correspond-
ing Noether’s currents.
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• Conservation of the charge q1:

ψ1 −→ ψ
′

1 = e−iq1ψ1. (11)

The corresponding Noether current can be written as:

J µ
1 =

∂Lfermion

∂(∂µψ1)
∆ψ1 with

∂Lfermion

∂(∂µψ1)
= iψ̄1γ

µ and ∆ψ1 = −iq1ψ1. (12)

Combining the above results yields:

J µ
1 = q1ψ̄1γ

µψ1. (13)

• Conservation of the charge q2:

ψ2 −→ ψ
′

2 = e−iq2ψ2. (14)

The corresponding Noether current can be written as:

J µ
2 =

∂Lfermion

∂(∂µψ2)
∆ψ2 with

∂Lfermion

∂(∂µψ2)
= iψ̄2γ

µ and ∆ψ2 = −iq2ψ2. (15)

Similarly, combining the above results yields:

J µ
2 = q2ψ̄2γ

µψ2. (16)

The symmetry transformation is given by the [U(1)]qi group which corresponds to
the conservation of charge qi. Because there are two conserved charges, the global
symmetry group is therefore given by [U(1)]q1 ⊗ [U(1)]q2 .

(3) We expect that at the quantum level all classically conserved charge become oper-
ators that commute with the Himiltonian. We check this by explicit calculation.

The charge operator for each species of fermions is defined in terms of the Noether’s
current as

Qi =

∫
d3xJ 0

i (x) = qi

∫
d3xψ†i (x)ψi(x) (17)

which can be expanded using the definition of the Dirac field to arrive to the
following expressions:

Qi = qi

∫
d3p

(2π)32Ep

∑
r,s

(
br

†

~p b
s
~pu

r†

i (p)us(p) + cr−~pc
s†

−~pv
r†

i (−p)vs(−p)
)

(18)

= qi

∫
d3p

(2π)3

∑
s

(
bs

†

~p b
s
~p + cs~pc

s†

~p

)
(19)

The first line is derived by first integrating over x and then over the second momen-
tum. From the first to the second line, we first used the orthogonal properties of
the spinors ur

†
i (p)us(p) = vr

†
i (p)vs(p) = 2Epδ

r,s, then by symmetry replaced cs−~pc
s†

−~p

with just cs~pc
s†

~p .
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The Hamiltonian density is, instead, derived from the energy-momentum tensor
through the relation H = T 00 from which the Hamiltonian operator is found to be
H =

∫
d3xH. The contribution to the Hamiltonian operator can be organized in

terms of the species of fermions. For a fermion i, the Hamiltonian operator Hi can
be derived from Eq. (10) using the Dirac equation:

Hi = i

∫
d3xψ†i∂tψi. (20)

By performing the exact same calculation as for the charge operator, we find:

Hi =

∫
d3p

(2π)3
Ep
∑
s

(
bs

†

~p b
s
~p − cs~pcs

†

~p

)
. (21)

Computing the commutation relation [Hi, Qi] involves the computation of the fol-

lowing terms
[
bs

†

~p b
s
~p, b

r†

~k
br~k

]
and

[
cs~pc

s†

~p , c
r
~k
cr

†

~k

]
which can be written in terms of anti-

commutation relations. For instance,∫
d3p

(2π)3
Ep

[
bs

†

~p b
s
~p, b

r†

~k
br~k

]
=

∫
d3p

(2π)3
Ep

(
bs

†

~p

{
bs~p, b

r†
~k

}
br~k − b

r†

~k

{
bs†~p , b

r
~k

}
bs~p

)
= 0.

(22)

Similarly one can show that the commutator of the term with c-operators also
vanishes. It follows that the charge operators Qi commute with the Hamiltonian,
as we set out to prove:

[Qi, H] = 0. (23)

Because the creation and annihilation operators corresponding to different Fermion
species anticommute, and exploiting again the bilinearity in order to express the
commutator in terms of anticommutators as in Eq. (22) it is easy to see that

[Q1, Q2] = 0. (24)

Hence we conclude that the maximal set of operators that commute with the Hamil-
tonian is given by Q1 and Q2, and that they commute with each other. So also at
the quantum level the symmetry group is [U(1)]q1 ⊗ [U(1)]q2 .

(4) Let us now write down the Feynman rules of the theory.

(a) External lines: the Feynman rules for the external lines can be obtained by
acting the fields on the initial and final-state particles.

φ|s(p)〉 =
p

= 1 〈s(p)|φ =
p

= 1

ψi|fi(pj, s)〉 = pj
= usi (pj) 〈fi(pj, s)|ψ̄i = pj

= ūsi (pj)

ψ̄i|f̄i(pj, s)〉 = pj
= v̄si (pj) 〈f̄i(pj, s)|ψi = pj

= vsi (pj)

The index on the fields and spinors denote the species of fermion.
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(b) The propagators can be computed from the contracted fields.

φ(x)φ(y) =
p

=
i

p−m2
φ + iε

(25)

ψi(x)ψi(y) =
p

=
i(6 pj +m)

pj −m2
i + iε

(26)

(c) Finally, the scalar-fermion vertex is given by

= −g (27)

(5) In this section, we are going to compute the modulus square of the unpolarized
amplitude for the elastic scattering f1f̄2 → f1f̄2. As shown in Eq. (28), only one
single diagram contributes to this process.

iMt(f1f̄2 → f1f̄2) ≡

f1(p1, s1) f1(p3, s3)

f̄2(p2, s2) f̄2(p4, s4)

(28)

Here, we used the black line to denote a fermion of type 1 and the red line to denote
a fermion of type 2. Using the Feynman rules from the previous section, we can
write down the expression of the scattering amplitude given by Eq. (28):

iMt(f1f̄2 → f1f̄2) = ig2ūs1(p3)u
s
1(p1)

1

t−m2
φ

v22(p4)v̄
s
2(p2), (29)

where we used the definition of the Mandelstam variable t = (p1−p3)2. Multiplying
Eq.(29) by its hermitian conjugate, summing over the polarization of the final states
and averaging over the polarization of the initial states, we get

|M̄t|2 =
1

4

∑
si

|Mt(f1f̄2 → f1f̄2)|2 (30)

=
g4

4(t−mφ)2
Tr
[
(/p1 +m1)(/p3 +m1)

]
Tr
[
(/p2 +m2)(/p4 +m2)

]
, (31)

where in order to go from the first to the second line we used the completeness
relations of the spinors

∑
s ū

s
i (pi)u

s
i (pi) = /pi + mi and

∑
s v̄

s
i (pi)v

s
i (pi) = /pi − mi.
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The above expression can be simplified further using the properties of the trace of
gamma matrices:

|M̄t|2 =
4g4

(t−mφ)2
[
(p1p3) +m2

1

] [
(p2p4) +m2

2

]
(32)

=
g4

(t−mφ)2
(
t− 4m2

1

) (
t− 4m2

2

)
, (33)

where in order to arrive to the last line we used again the definition of the Mandel-
stam variable (p1p3) = m2

1 − t/2 and (p2p4) = m2
2 − t/2.

(6) Let us now compute the amplitude derived in the previous section in the limit
mφ →∞. Expanding Eq. (33) as a series in 1/mφ leads to the following expression:

|M̄t(mφ →∞)|2 =

(
g

mφ

)4 (
t− 4m2

1

) (
t− 4m2

2

)
+O

(
1

m5
φ

)
. (34)

As shown in Fig. 1, this corresponds to a diagram where the scalar propagator
shrinks leading to a 4-Fermi vertex amplitude whose theory is governed by the
following Lagrangian:

L′ = L(mφ →∞) =
∑
i=1,2

ψ̄i(i6 ∂ −mi)ψi +G
(
ψ̄ψ
)2
, (35)

where the coupling G is related to g via the relation G = g2/m2
φ.

f1(p1, s1) f1(p3, s3)

f̄2(p2, s2) f̄2(p4, s4)

mφ →∞

f1(p1, s1) f1(p3, s3)

f̄2(p2, s2) f̄2(p4, s4)

Figure 1: Large-mφ limit diagram for f1f̄2 → f1f̄2.

Considering ~ = c = 1, we know that the Lagrangian has dimension [E]4 while ψ

and ψ̄ have each dimension [E]3/2, and φ has dimension [E]. It can be read from
the Lagrangian L that the coupling g is dimensionless and therefore the theory is
renormalizable. However, the coupling G in L′ has dimension [E]−2 and therefore
the theory is not renormalizable.

(7) In the case m1 = m2 = m, there is a larger symmetry since we can mix ψ1 and ψ2

by introducing Ψ =

(
ψ1

ψ2

)
such that the Lagrangian in Eq. (2) can be written as:

L̃ =
1

2

(
∂µφ∂

µφ−m2φ2
)

+ Ψ̄(i6 ∂ −m+ igφ)Ψ. (36)
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We can see that the above Lagrangian is invariant under the transformation Ψ →
UΨ where U is a unitary two-by-two matrix that satisfies UU † = I. The complex
matrices that satisfy this condition form a group U(2) = SU(2) ⊗ U(1) where the
symmetry group U(1) corresponds to the conservation of the total charge while
SU(2) corresponds to the conservation of the relative charge.

Defining U = exp(iθaσa), with σa denoting the Pauli matrices which are the gener-
ators of the group SU(2), the Noether currents are found to be J µ

a = Ψ̄γµσaΨ for
the SU(2) transformation and J µ

a = Ψ̄γµΨ for U(1). From these we get charges Qa

and Q respectively, where at the quantum level Ψ is now a (doublet) Fermion field
operator, and

π = ∂L̃/∂ (∂tΨ) = iΨ† (37)

is the corresponding canonical momentum operator that satisfies the anticommu-
tation relation

{Ψ(x)i, πj(y)} = iδijδ
(3)(x− y). (38)

Notice that the Pauli matrices satisfies the commutation relations [σa, σb] = 2iεabcσc.

The Hamiltonian operator for the spinor doublet part is now given by

H = i

∫
d3xΨ†∂tΨ. (39)

We can compute all commutators in terms of the fundamental anticommutator
Eq (38) using repeatedly the manipulation of Eq. (22). We immediately get

[Qa, H] = 0; [Q,H]. (40)

The commutation relations between charges Qa however are now more interesting.
Using the definition of the charge in terms of the Noether current Qa =

∫
d3xJ 0

a ,
we have:

[Qa, Qb] = (σa)ij (σb)kl

∫
d3x d3y

[
Ψ†i (x)Ψj(x),Ψ†j(y)Ψk(y)

]
(41)

=

∫
d3x d3y Ψ†(x) [σa, σb] Ψ(x) (42)

= 2iεabcQc, (43)

where in the first line i and j are the indices in the Lie algebra representation
space which allowed us to compute independently the commutation between the
spinor doublets. In order to go from the first to the second line, we first ex-
pressed the commutator in terms of anticommutators in order to use the relation{

Ψ†i (x),Ψj(y)
}

= iδijδ
(3)(x−y), then restoring back the commutation between the

Pauli matrices. Finally, using the commutation relations between Pauli matrices,
it is straightforward to arrive to the final result. Similarly, because the identity
matrix of course commutes with Pauli matrices, it is easy to check that

[Q,Qa] = 0. (44)

Hence we now find that the maximal numer of operators that commute with the
Hamiltonian is given by the charges Q and Qa, which satisfy the commutation
relatons of the generators of the group [U(1)]⊗ [SU(2)].
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