Solutions to the exam of QFT1 of 19 June 2025
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(1) The energy-momentum tensor is
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The terms with the barred fermion fields are zero because the Lagrangian is not dependent on
their derivative. The Hamiltonian density is the 0’th component of this:
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(2) You can read off the Feynman rules from the Lagrangian:
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(3) Consider the transformation

P — e ey
P — e~ P24y (4)

The Lagrangian is invariant under this transformation as long as 6; = 6, = 0. To construct the
Noether current we need the corresponding infenitesimal transformations of the fields:

Y1 — (1 —1i0)r
Yo = (1 —i0)tps
— (5’¢1 = —iewl, 5’¢2 = Ze’lﬂg (5)

The Noether current is then given by
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The corresponding conserved charge is
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The physical meaning of is the conservation of the number of fermions.

(4) We can build the interaction fifi — ¢¢ from the Feynman rules, and we find two tree-level
diagrams: the u-channel and the t-channel.




(5) The total unpolarized amplitude is given by
1 1
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with
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q=p1 —pa, k=p1—ps.
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For the squared amplitudes we need to use the gamma trace identity Tr(y#y"~vPy?) = 4(nH"nP? —
n*PYYe + nHon¥P), the fact that a trace over an odd number of gamma matrices is zero, and the
polarization sums. Defining also u = (p; — p4)? and t = (p1 — p3)? and setting m = 0 we get

L] = % > 9401(]91)mul(m)vl(m)mul(m)

= %(2(291 -p4)(p2 - pa) — MQ(P1 “p2));

MQ = %(2(191 -p3)(p2 - p3) — M*(p1 - p2));

M, My = %((m ~pa)(p2 - p3) — (1 - p2)(pa - p3) + (P1 - P3)(pa - 2));

MiM; = %i((pl -p3)(P2 - pa) — (P1 - p2)(p3 - pa) + (p1 - pa)(p3 - P2))-

In total the spin-averaged amplitude is then
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(11)

For completeness we have kept all masses but full score is given for the computation with m =0

as requested in the assignment.

(6) Now we set m = 0 and write everything in terms of Mandelstam variables. The momenta can

be written as



(pr-p2) = 5 (12)

(p3 - pa) = % - M? (13)

(p1-pa) = (p2 - p3) = M22_ 2, (14)
(p1-p3) = (p2 - pa) = MQQ_ L (15)

Another thing that is useful to realize is that s +t +u = 2M?2. Some careful rewriting yields
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The t-channel one-loop diagrams are shown in Figs. 1-4. All these diagrams have a u—channel
counterpart. We have one box diagram, the fermion and scalar self-energy corrections and
the vertex correction. We can calculate the degree of divergence by using the formula D =
4L — 2P, — Py, because a loop gives 4 powers of momenta upstairs from the integral, the scalar
propagator 2 powers downstairs, and the fermion propagator one power downstairs. Note that
the superficial degree of divergence of the self-energy and vertex diagrams is actually lower than
the actual degree of divergence because they are divergent subdiagrams of a diagram with more
propagators.

Writing ¥ = <$1) , it follows that W = (¢1, ) so the interaction Lagrangian can be written as
2

Lo = (0, T8%) w= ot (18)

where o7 is the first Pauli matrix. It is then clear that the Lagrangian is also invariant under
the transformation ¥ — e**71 0.
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Figure 22 D=4-1—-2-1—1=1. The fermion self-energy diagrams are linearly divergent.
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Figure 3: D =4-1—2 = 1. The scalar self-energy diagrams are quadratically divergent.

Figure 4: D=4-1—-2-1—2=0. The vertex correction is logarithmically divergent.



