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1. From the Lagrangian

L = −1

4
FµνF

µν +
1

2

(
∂µφ∂

µφ−m2φ2
)

+
g

4
φFµνF

µν . (1)

we get the Feynman rules

−igαβ

p2 + iε
(2)

i

p2 −m2 + iε
(3)

− ig
(

(p1 · p2) gαβ − pβ1p
α
2

)
(4)

where incoming momenta flow towards the vertex.
The dimension of g is [M ]−1, the inverse of a mass.

2. For Higgs production at lowest order there is only one diagram, which coincides with the
vertex. The matrix element is thus

iM = −ig εα (p1) εβ (p2)
(

(p1 · p2) gαβ − pβ1p
α
2

)
, (5)

where we have recalled the fact that the Feynman rules provide an expression for the
S-matrix element iM.
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Figure 1: LO diagrams to γ + γ → γ + γ

The unpolarized squared amplitude is

1

4

∑
|M|2 =

g2

4
(−gαµ) (−gβν)

(
(p1 · p2) gαβ − pβ1p

α
2

)
((p1 · p2) gµν − pν1p

µ
2 )

=
g2

4

(
(p1 · p2) gαβ − pβ1p

α
2

) (
(p1 · p2) gαβ − p1βp2α

)
=
g2

4

(
4 (p1 · p2)2 − (p1 · p2)2 − (p1 · p2)

)
=
g2

2
(p1 · p2)2 (6)

where we have used the polarizarion sum given in the assignment∑
εα (p) ε∗µ (p) = −gαµ. (7)

In terms of Mandelstam variables, Eq. (6) becomes

1

4

∑
|M|2 =

g2

8
s2, (8)

given that s = (p1 + p2)
2 = 2 (p1 · p2).

3. The process
γ (p1) + γ (p2)→ γ (k1) + γ (k2) (9)

proceeds through the three Feynman diagrams shown in Fig. 3, corresponding to s-, t-, and
u-channel contributions.

The corresponding amplitudes are

iMs = −i g2

s−m2 + iε
εα (p1) εβ (p2) ε

∗
µ (k1) ε

∗
ν (k2)

(
(p1 · p2) gαβ − pβ1p

α
2

)
((k1 · k2) gµν − kν1k

µ
2 )

(10)

iMt = −i g2

t−m2 + iε
εα (p1) εβ (p2) ε

∗
µ (k1) ε

∗
ν (k2) (− (p1 · k1) gαµ + pµ1k

α
1 )
(
− (p2 · k2) gβν + pνk

β
2

)
(11)

iMu = −i g2

u−m2 + iε
εα (p1) εβ (p2) ε

∗
µ (k1) ε

∗
ν (k2) (− (p1 · k2) gαν + pν1k

α
2 )
(
− (k1 · p2) gµβ + kβ1 p

µ
2

)
.

(12)

The total amplitude for this process is given by the sum of the three contributions:

M =Ms +Mt +Mu. (13)
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4. Keeping only the s-channel contributionMs we get

1

4

∑
|M|2 =

1

4

∑
|Ms|2 =

g4

4 (s−m2)2

(s
2
gαβ − pβ1p

α
2

)(s
2
gµν − kν1k

µ
2

)
(s

2
gαβ − p1βp2α

)(s
2
gµν − k1νk2µ

)
=

g4

4 (s−m2)2

(
s2 − s2

2

)(
s2 − s2

2

)
=

g4s4

16 (s−m2)2
, (14)

where we have set ε = 0 in the propagators, and we have made use of

(p1 · p2) = (k1 · k2) =
s

2
. (15)

5. For Higgs production the phase space is one-body:

dΦ1 =
d3pH

(2π)3 2m
(2π)4 δ(4) (p1 + p2 − pH)

=
π

m
δ
(√
s−m

)
= 2πδ

(
s−m2

)
(16)

and the flux factor is
Φ = 4

√
(p1 · p2)2 = 2s (17)

The total cross section is therefore

σ1 =
g2m2

8
πδ
(
s−m2

)
. (18)

6. For photon-photon scattering the phase space is the standard two-body

dΦ2 =
1

2

d3k1

(2π)3
√
s

d3k2

(2π)3
√
s

(2π)4 δ(4) (p1 + p2 − k1 − k2) (19)

since in the center-of-mass frame, with all particle massless, we have

|p1|2 = |p2|2 = |k1|2 = |k2|2 = k =

√
s

2
, (20)

and we have to halve the result since in the final state we have two indistinguishable
particles.

We can simplify the phase space as

dΦ2 =
1

2

dk d cos θ dφ

16π2
δ
(√
s− 2k

)
=
d cos θ

32π
(21)

and we can evaluate the flux factor as before

Φ = 2s. (22)

We thus obtain the following implicit expression for the differential cross section:

dσ2
d cos θ

=
1

64πs

1

4

∑
|M|2 (23)

withM given by Eq. (13).
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7. We want to show that
ImM2 =

Φ

2
σ1. (24)

We start from Eq. (10), set k1 = p1, k2 = p2, and perform the average over initial polar-
izations: we get

1

4

∑
Ms (p1 + p2 → p1 + p2) = − g2

8 (s−m2 + iε)
s2, (25)

where we have restored the crucial factor of iε in the propagator. Using the hint

lim
ε→0

1

s−m2 + iε
=

1

s−m2
− iπδ

(
s−m2

)
, (26)

so we can rewrite Eq. (25) as

1

4

∑
Ms (p1 + p2 → p1 + p2) = − g2s2

8 (s−m2)
+ iπ

g2m2

8
δ
(
s−m2

)
. (27)

We thus get immediately

Im

(
1

4

∑
Ms (p1 + p2 → p1 + p2)

)
= π

g2m2

8
δ
(
s−m2

)
= m2σ1. (28)

Comparing the Feynman diagram of Fig 3 and the vertex Eq. (4) it is clear that the former
can be viewed as the “square modulus” of the latter, when the propagator goes on shell.
The identity Eq. (26) then extracts this on-shell part.
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