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Consider the scalar QED Lagrangian:

L = −1

4
FµνF

µν + (Dµφ)∗ (Dµφ)−m2φ∗φ, (1)

where φ is a complex scalar field, Fµν is the Maxwell field strength, and Dµ is the covariant
derivative defined as

Dµ = ∂µ + ieAµ. (2)

• The complex scalar field φ is defined as

φ(~x, t) =

∫
d3p

(2π)3
√

2Ep

{
a~p e−ip

µxµ + b†~p eip
µxµ
}
, (3)

with the commutation relation:

[a~p, a
†
~k
] = [b~p, b

†
~k
] = (2π)3δ(3)(~p− ~k). (4)

• The Maxwell field tensor is defined as Fµν = ∂[µAν], where the expression of the
photon field is given by

Aµ(x) =

∫
d3p

(2π)3
√

2Ep

∑
λ

{
εµ,λ(p)a~p,λ e−ip

µxµ + ε∗µ,λ(p)a
†
~p eip

µxµ
}
. (5)

(1) The energy-momentum tensor of this theory is given by:

T µν =
∂L′

∂(∂µφ)
∂νφ+

∂L′

∂(∂µφ∗)
∂νφ

∗ +
∂L′

∂(∂µAλ)
∂νAλ − δµνL

′
, (6)

where L′
= |Dφ|2 −m2|φ|2. Hence, we have

T µν = (∂µ − ieAµ)φ∗∂νφ+ (∂µ + ieAµ)φ∂νφ
∗ − δµνL

′
. (7)

The Hamiltonian density H = T 00 is then given by

H = 2φ̇φ̇∗ + ieA0(φφ̇∗ − φ∗φ̇)− |Dφ|2 +m2|φ|2 (8)

= φ̇φ̇∗ + ~∇φ∗ · ~∇φ+ ie
[
φ(~∇φ∗) · ~A− φ∗(~∇φ) · ~A

]
+
(
m2 − e2AµAµ

)
|φ|2, (9)

where φ̇ denotes ∂0φ (and resp. φ̇∗ denotes ∂0φ
∗).

(2) The Lagrangian is invariant under the transformation

φ −→ φ
′
= e−iαφ. (10)
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Because the field is complex, the variations of the fields φ and φ∗ must be considered
as independent. The infinitesimal transformations are

φ −→ φ′ = (1− iα)φ⇒ ∆φ = −iφ (11)

φ∗ −→ (φ′)∗ = (1 + iα)φ∗ ⇒ ∆φ∗ = iφ∗ (12)

Using these results to compute the conserved Noether current associated to the
above symmetry, we have:

J µ =
∂L

∂(∂µφ)
∆φ+

∂L
∂(∂µφ∗)

∆φ∗ (13)

= (∂µφ∗ − ieAµφ∗)(−iφ) + (∂µφ+ ieAµφ)(iφ∗) (14)

= i(φ∗Dµφ− φDµφ∗). (15)

(3) The Feynman rules of the theory are

(a) External lines:

φ|s(p)〉 =
p

= 1, 〈s(p)|φ =
p

= 1,

Aµ|γ(p, s)〉 =
p

= εµ(p, s), 〈γ(p, s)|Aµ =
p

= ε∗µ(p, s).

(b) Propagators:

Scalar :
p

=
i

p2 −m2 + iε
(16)

Photon :
µ νp

= − i

p2 + iε

[
gµν − (1− ξ)pµpν

p2

]
. (17)

The Feynman gauge expression ξ = 1 is considered as a correct solution.

(c) Vertices:

p2

p1

µ
= −ie(p1 + p2)

µ,

µ ν

= 2ie2gµν (18)

One can deduce from the Lagrangian that since [∂µ] = [φ] = [Aµ] = 1 the coupling
e is dimensionless and therefore the theory is renormalizable.

(4) As shown in Fig. 1, three diagrams contribute to the process γφ → γφ. The
respective contribtions to the amplitude are

iMg(γφ→ γφ) = ε∗µ(p4)
[
2ie2gµν

]
εν(p2) (19)

iMs(γφ→ γφ) = (−ie)2ε∗µ(p4)(p3 + k)µ
(

i

k2 −m2

)
(p1 + k)νεν(p2) (20)

iMu(γφ→ γφ) = (−ie)2ε∗µ(p4)(p1 + l)µ
(

i

l2 −m2

)
(p3 + l)νεν(p2) (21)
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Figure 1: Leading non-vanishing diagrams for γφ→ γφ.

The scattering amplitude is found as the sum of these contributions. It can be
simplified using momentum conservation and the fact that εµ(pi)p

µ
i = 0. One gets

M(γφ→ γφ) = e2ε∗µ(p4)εν(p2)
(
Mµν
g + Mµν

s + Mµν
u

)
= 2e2ε∗µ(p4)εν(p2)M

µν , (22)

where Mµν is defined as

Mµν = gµν − pµ3p
ν
1

(p1p2)
+

pµ1p
ν
3

(p2p3)
. (23)

In the last expression, the parentheses represent the usual scalar products.

(5) In order to show that the amplitude computed in the previous point (Eq. (22))
vanishes if any of the polarization vectors for the external photon is proportional
to the momentum carried out by that respective photon we choose εν(p2) = λ(p2)ν .
We get

M(γφ→ γφ) = 2λe2ε∗µ(p4)(p2)ν

{
gµν − pµ3p

ν
1

(p1p2)
+

pµ1p
ν
3

(p2p3)

}
(24)

= 2λe2ε∗µ(p4) (p2 − p3 + p1)
µ (25)

= 2e2ε∗µ(p4)p
µ
4 (26)

= 0, (27)

where ee used momentum conservation and the fact that ε∗µ(p4)p
µ
4 = 0.

(6) We compute the modulus square of the amplitude computed at point (4). Multi-
plying Eq. (22) by its complex conjugate yields

|M(γφ→ γφ)|2 = 4e4ε∗µ(p4)εν(p2)ερ(p4)ε
∗
β(p2)M

µνMρβ. (28)

Since we are considering an unpolarized process, we have to sum over the polariza-
tion of the final state and average over the polarization of the initial state photons.
Writing explicitly the indices of the polarizations, we have

|M(γφ→ γφ)|2 =
1

2

∑
pol.

|M(γφ→ γφ)|2 (29)

= 2e4
∑
λ,σ

ε∗µ,λ(p4)εν(p2, σ)ερ,λ(p4)ε
∗
β,σ(p2)M

µνMρβ. (30)
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The sum over polarizations is∑
λ

ε∗µ,λ(p4)ερ,λ(p4) = −gµρ. (31)

By defining the following quantities

ξµν =
pµ3p1ν

(p1p2)
, χµν =

pµ1p
ν
3

(p2p3)
, (32)

and using the result in Eq. (31), the modulus square of the amplitude is given by

|M(γφ→ γφ)|2 = 2e4MµνMµν (33)

= 2e4
(
ξµνξµν + χµνχµν − 2ξµνχµν − 2ξµµ + 2χµµ + 4

)
, (34)

where

ξµνξµν =
m4

(p1p2)2
, ξµνχµν =

(p1p3)
2

(p1p2)(p2p3)
, and ξµµ =

(p1p3)

(p1p2)
. (35)

Notice that ξ and χ are related by crossing symmetry. Thus, the expression of χ
can be obtained from ξ by replacing p2 with (-p4) and vice-versa. With a little bit
of algebra, we finally find that the final expression of the amplitude square is given
by the following expression

|M(γφ→ γφ)|2 = 2e4
{

m4

(p1p2)2
+

m4

(p2p3)2
− 2(p1p3)

2

(p1p2)(p2p3)
(36)

−2(p1p3)

(p1p2)
+

2(p1p3)

(p2p3)
+ 4

}
. (37)

(7) The canonical commutation relations for the scalar QED are given by

[φ(x), π(y)] = [φ∗(x), π∗(y)] = iδ(3)(x− y), [Aµ(x), π̃ν(y)] = igµνδ
(3)(x− y),

where the canonical momenta are given by

π(x) =
∂L
∂φ̇

= φ̇∗ − ieA0φ
∗, π∗(x) =

∂L
∂φ̇∗

= φ̇+ ieA0φ, (38)

πµ(x) =
∂L
∂Ȧµ

, with π0(x) = −∂µAµ and πi(x) = ∂iA0 − Ȧi. (39)

Notice that all the other commutation relations vanish. On the other hand, using
the expression of of the Noether current in Eq. (15), the Noether charge can be
written in the following form

Q =

∫
d3x [i(φ∗φ̇− φφ̇∗)− 2eA0φ

∗φ] (40)

= i

∫
d3x (φ∗π∗ − φπ). (41)
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We can now compute the commutator if the Noether charge with the fields in the
scalar QED theory:

[Q, φ(x)] = −i
∫

d3xφ(x)[π(y), φ(x)] = −φ(x), (42)

[Q, φ∗(x)] = i

∫
d3xφ∗(x)[π(y), φ∗(x)] = φ∗(x), (43)

[Q, Aµ(x)] = 0. (44)

It follows that at the quantum level the classical Noether charge generates the
infinitesimal transformation upon commutation.
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