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Consider a theory which involves a complex scalar φ, a Dirac fermion ψ, and a photon
field Aµ given by the following Lagrangian:

L = −1

4
FµνF

µν + |Dφ|2 −m2
φ|φ|2 + ψ̄

(
i /D −m

)
ψ, (1)

where φ is a complex scalar field, Fµν is the Maxwell field strength, and Dµ is the covariant
derivative defined as

Dµ = ∂µ + ieAµ. (2)

• The complex scalar field φ is defined as

φ(~x, t) =

∫
d3p

(2π)3
√

2Ep

{
a~p e−ip

µxµ + b†~p eip
µxµ
}
, (3)

with the commutation relation:

[a~p, a
†
~k
] = [b~p, b

†
~k
] = (2π)3δ(3)(~p− ~k). (4)

• The Maxwell field tensor is defined as Fµν = ∂[µAν], where the expression of the
photon field is given by

Aµ(x) =

∫
d3p

(2π)3
√

2Ep

∑
λ

{
εµ,λ(p)a~p,λ e−ip

µxµ + ε∗µ,λ(p)a
†
~p eip

µxµ
}
. (5)

• The Dirac fermion field ψ is defined as follows

ψ(~x, t) =

∫
d3p

(2π)3
√

2Ep

∑
s

{
bs~p u

s(p)e−ip
µxµ + cs

†

~p v
s(p)eip

µxµ
}
, (6)

with the annihilation and creation operators satisfying the following anticommuta-
tion relation:

{bs~p, br
†

~k
} = {cs~p, cr

†

~k
} = (2π)3δsrδ(3)(~p− ~k). (7)

(1) The energy-momentum tensor for this theory is given by:

T µν =
∂L

∂(∂µφ)
∂νφ+

∂L
∂(∂µφ∗)

∂νφ
∗ +

∂L
∂(∂µψ)

∂νψ +
∂L

∂(∂µAλ)
∂νAλ − δµνL (8)

= (∂µ − ieAµ)φ∗∂νφ+ (∂µ + ieAµ)φ∂νφ
∗ + iψ̄γµ∂νψ − F µλ∂νAλ − δµνL. (9)

The Hamiltonian density H = T 00 is then given by:

H = 2φ̇φ̇∗ + ieA0
(
φφ̇∗ − φ∗φ̇

)
+ iψ†ψ̇ − F 0iȦi − g00L (10)

= φ̇φ̇∗ + (~∇φ∗) · (~∇φ) + ie
[
φ(~∇φ∗) · ~A− φ∗(~∇φ) · ~A

]
+mψ̄ψ

+
(
m2
φ − e2AµAµ

)
|φ|2 + iψ̄~γ · (~∇ψ) +

1

2

(
F ijF ij + F 0iF 0i

)
, (11)
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where the last step holds assuming A0 = 0.

The canonical momenta are respectively for the scalar field π = φ̇, for the fermion
field Π = ψ† and for the Maxwell field Ei = F 0i. We thus find

H = ππ∗ + (~∇φ∗) · (~∇φ) + ie
[
φ(~∇φ∗) · ~A− φ∗(~∇φ) · ~A

]
+mψ̄ψ

+
(
m2
φ − e2AµAµ

)
|φ|2 + iψ̄~γ · (~∇ψ) +

1

2

(
~E · ~E + F ijF ij

)
. (12)

Note that becaue the Dirac Larangian is first order in time derivatives, the Hamil-
tonian does not depend on the canonical momentum.
(Full credit is given for simply stating that Ei = F 0i).

(2) Let us now write down the transformations that leave the Lagrangian invariant and
derive the corresponding Noether’s currents.

– Charge conservation for scalars

The Lagrangian is invariant under the transformation:

φ −→ φ
′
= e−iαφ. (13)

Since the scalar field is complex, the variations of the fields φ and φ∗ has to
be considered as independent. The infinitesimal transformations are:

φ −→ φ+ ∆φ ∼ (1− iα)φ⇒ ∆φ = −iφ (14)

φ∗ −→ φ∗ + ∆φ∗ ∼ (1 + iα)φ∗ ⇒ ∆φ∗ = iφ∗ (15)

Using these results to compute the conserved Noether current associated with
the above symmetry, we have:

φ −→ φ+ ∆φ ∼ (1− iα)φ⇒ ∆φ = −iφ (16)

φ∗ −→ φ∗ + ∆φ∗ ∼ (1 + iα)φ∗ ⇒ ∆φ∗ = iφ∗ (17)

Using these results to compute the conserved Noether current associated with
the above symmetry, we have:

J µ
φ =

∂L
∂(∂µφ)

∆φ+
∂L

∂(∂µφ∗)
∆φ∗ (18)

= (∂µφ∗ − ieAµφ∗)(−iφ) + (∂µφ+ ieAµφ)(iφ∗) (19)

= i(φ∗Dµφ− φ(Dµφ)∗). (20)

– Charge conservation for fermions

For the fermion field, the following transformation leaves the Lagrangian in-
variant:

ψ −→ ψ
′
= e−iqψ. (21)

The corresponding Noether’s current can be written as:

J µ
ψ =

LDirac

∂(∂µψ)
∆ψ with

LDirac

∂(∂µψ)
= iψ̄γµ, (22)
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and ∆ψ can be known by considering an infinitesimal transformation

ψ −→ ψ + ∆ψ, ∆ψ = −iqψ. (23)

Combining this result to the ones in Eq. (22), we have

J µ
ψ = qψ̄γµψ. (24)

The symmetry transformations are given by the U(1) groups which correspond to
the conservation of charges. Hence, the global symmetry group that governs the
theory is U(1)⊗ U(1).

(3) Let us now write down the Feynman rules of the theory.

(a) External lines:

φ|s(p)〉 =
p

= 1, 〈s(p)|φ =
p

= 1,

ψ|f(p, s)〉 =
p

= us(p), 〈f(p, s)|ψ̄ =
p

= ūs(p),

ψ̄|f̄(p, s)〉 =
p

= v̄s(p), 〈f̄(p, s)|ψ =
p

= vs(p),

Aµ|γ(p, s)〉 =
p

= εµ(p, s), 〈γ(p, s)|Aµ =
p

= ε∗µ(p, s). (25)

(b) Propagators:

Scalar :
p

=
i

p2 −m2 + iε
(26)

Fermion :
p

=
i

p−M2 + iε
(27)

Photon :
µ νp

= − i

p2 + iε

[
gµν − (1− ξ)pµpν

p2

]
(28)

In the expression of the photon propagator, ξ parametrizes a set of covariant
gauges (for a Feynman gauge, ξ = 1).

(c) Vertices:

µ ν

= 2ie2gµν , µ = −ieγµ,
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p2

p1

µ
= −ie(p1 + p2)

µ, (29)

(4) Let us now compute the scattering amplitude of the process ff̄ → φφ̄. As shown in
Fig. 1, only one single diagram contribute to such a process at leading order. Using
the above Feynman rules, the amplitude can be written as:

f(p1, s1)

f̄(p2, s2)

φ(p3)

φ̄(p4)

(p1 + p2)

iMs

µ ν

Figure 1: Leading non-vanishing diagrams for ff̄ −→ φφ̄.

iMs = (−ie)2 (p3 − p4)ν
(
− igµν

(p1 + p2)2

)
u(p1)γ

µv̄(p2) (30)

= i
e2

s
(p3 − p4)ν u(p1)γν v̄(p2). (31)

Taking the modulus square of the above amplitude leads to the following:

|Ms|2 =
e4

s2
(p3 − p4)µ (p3 − p4)ν Tr [u(p1)γµv̄(p2)v(p2)γν ū(p1)] . (32)

Since we are considering an unpolarized process, we need to average over the po-
larization of the initial state fermions. This yields:

|M̄s|2 =
1

4

∑
s1,s2

|M|2 (33)

=
e4

4s2
(p3 − p4)µ (p3 − p4)ν Tr

[(
/p1 +m

)
γµ

(
/p2 −m

)
γν

]
, (34)

where to go from the first to the second line we used the completeness relations∑
s1
ū(p1, s1)u(p1, s1) = (/p1 +m) and

∑
s2
v̄(p2, s2)v(p2, s2) = (/p2 −m).

The expression of the amplitude in Eq. (34) can be simplified using the following
property of trace

Tr
[(
/p+m

)
γµ (/k −m) γν

]
= 4

[
pµkν + pνkµ − gµνm2 − gµν(pk)

]
, (35)

where the parenthesis denote the usual scalar product. Thus, Eq.(34) now becomes:

|M̄s|2 =
e4

s2
(p3 − p4)µ (p3 − p4)ν

[
(p1)µ(p2)ν + (p1)ν(p2)µ − gµν(m2 + (p1p2))

]
(36)
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=
e4

s2
[
2(p1p3)(p2p3)− p23(m2 + (p1p2))

]
+
e4

s2
[
2(p1p4)(p2p4)− p24(m2 + (p1p2))

]
+

2e4

s2
[
(p1p3)(p2p4) + (p1p4)(p2p3)− (p3p4)(m

2 + (p1p2))
]

(37)

The above expression can be simplified further using the following definition of the
Mandesltam variables

(p1p2) =
s

2
−m2 (38)

(p3p4) =
s

2
−m2

φ (39)

(p1p3) = (p2p4) =
1

2

(
m2 +m2

φ − t
)

(40)

(p1p4) = (p2p3) =
1

2

(
m2 +m2

φ − u
)
, (41)

Using the above definitions and performing some algebraic simplifications, the am-
plitude in Eq. (34) now becomes:

|M̄s|2 =
e4

2s2
[
s2 − 4m2

φs− (t− u)2
]
. (42)

(5) Let us compute the high-energy limit of the amplitude computed in the previous

section. In the high energy limit m2

s
→ 0 and

m2
φ

s
→ 0 so the limit is found setting

the masses to zero (m = mφ = 0) in Eq. (42), and the amplitude in this limit is
given by

|M̄HE
s |2 =

e4

2s2
[
s2 − (t− u)2

]
. (43)

Now, let us compute the minimal energy (say for the incoming fermion p1) that is
required in order for the above process to take place. Let us work in the center of
mass system (CMS) where ~p1 = −~p2 = ~p. The total CMS energy of the scalars
after the collision is given by:

s = E2
Out =

(√
m2
φ + |~p′|2 +

√
m2
φ + |~p′|2

)2
, (44)

so the minimum smin corresponds to the two scalars being at rest in the CMS, i.e.
~p′ = 0 and

smin = 4m2
φ. (45)

But

smin = (ps + p2)
2 = 4E2 = 4

√
m2 + ~p2, (46)

where ~p is the three-momentum of the incoming particles. Hence if m2 ≥ m2
φ the

process always happens, if m2 < m2
φ the center-of-mass energy of the incoming

particles must be at least as given by Eq. (45).
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We can use the result form Eq.(45) to derive the value of the amplitude correspond-
ing to the minimum energy in the center of mass frame. As mentioned before, the
minimum energy corresponds to the two scalars being at rest in the CMS. This
immediately implies that (p1 − p3) = (p1 − p4), so t = u. Hence, we have

|M̄Em
s |2 = |M̄s|2 =

e4

2s2min

[
s2min − 4m2

φsmin

]
= 0. (47)

(6) Let us now derive the modulus square of the process fφ → fφ. At leading order,
only one single diagram contribute:

iMt(fφ→ fφ) ≡

f(p1, s1) f(p2, s2)

φ(p3) φ(p4)

(48)

Using the Feynman rules in Sec. (3), we can write down the expression of the
scattering amplitude:

Mt =
e2

(p1 − p2)2
(p3 + p4)

µ ū(p2)γµu(p1). (49)

Multiplying Eq.(49) by its complex conjugate and using the completeness relations,
we find that the modulus square of the amplitude can be written as:

|Mt|2 =
e4

(p1 − p2)4
(p3 + p4)

µ (p3 + p4)
ν Tr

[(
/p1 +m

)
γµ

(
/p2 +m

)
γν

]
. (50)

We can notice that Eq. (50) is related to Eq. (32) with the following transformation
of the momenta:

|Mt|2 = −|Ms (p1 → p1, p2 → −p2, p3 → p4, p4 → −p3) |2. (51)

In terms of Mandelstam variables, this can be expressed as:

|M̄t|2 = −|M̄s (s→ t, t→ u, u→ s) |2. (52)

Therefore, using Eq. (42), we can derive the modulus square for the unpolarized
process fφ→ fφ which reads as:

|M̄t|2 =
e4

2t2
[
(u− s)2 + 4m2

φt− t2
]
. (53)
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