
Solution of the exam of Theoretical Physics of July 19 2023

Electromagnetic field:

Aµ(x) =

∫
d3p

(2π)3
1√
2Ep

∑
λ=±

(
aλpϵµ(p, λ)e

−ipx + aλ†p ϵ
∗
µ(p, λ)e

ipx
)

(1)

Spinor field:

ψi(x) =

∫
d3p

(2π)3
1√
2Ep

2∑
s=1

(
asi,pu

s
i (p)e

−ipx + bs†i,pv
s
i (p)e

ipx
)

i = 1, 2 (2)

1. The energy-momentum tensor is defined as

Tµ
ν =

∂L
∂(∂µψ1)

∂νψ1 +
∂L

∂(∂µψ2)
∂νψ2 +

∂L
∂(∂µAλ)

∂νAλ − δµνL. (3)

Using

∂L
∂(∂µψi)

= iψ̄iγ
µ, (4)

∂L
∂(∂µAλ)

= −Fµλ, (5)

we find
Tµ

ν = iψ̄1γ
µ∂νψ1 + iψ̄2γ

µ∂νψ2 − Fµλ∂νAλ − δµνL. (6)

The hamiltonian density is

H = T 00 = iψ̄1γ
0∂0ψ1 + iψ̄2γ

0∂0ψ2 − F 0λ∂0Aλ − L (7)

= iψ†
1ψ̇1 + iψ†

2ψ̇2 − F 0iȦi −
[
−1

4
FµνFµν + ψ̄1

(
i /D −m1

)
ψ1 + ψ̄2

(
i /D −m2

)
ψ2

]
. (8)

In the Coulomb gauge A0 = 0 and therefore Ȧi = F 0
i = −F 0i. Moreover we have D0 = ∂0. We thus get the simplified

expression

H =
1

2

(
F 0iF 0i +

1

2
F ijF ij

)
− ψ̄1

(
iγ⃗ ·

(
∇⃗ − ieA⃗

)
−m1

)
ψ1 − ψ̄2

(
iγ⃗ ·

(
∇⃗ − ieA⃗

)
−m2

)
ψ2. (9)

Note that we have assumed that ∇⃗ denotes ∂i, but A⃗ denotes Ai = −Ai.

2. The symmetries of the theory are:

ψ1 → ψ′
1 = e−iθ1ψ1,

ψ2 → ψ′
2 = e−iθ2ψ2

(10)

that correspond to a U(1)1 ⊗ U(1)2 symmetry. The Noether currents are

J µ
1 =

∂L
∂(∂µψ1)

∆ψ1 = ψ̄1γ
µψ1, (11)

J µ
2 =

∂L
∂(∂µψ2)

∆ψ2 = ψ̄2γ
µψ2, (12)

where we used

∆ψi =
δψi

θi
=

−iθiψi

θi
= −iψi. (13)

The charge operators are

Qi =

∫
d3xJ0

i (x) =

∫
d3xψ†

i (x)ψi(x) =

∫
d3p

(2π)3

∑
s=1,2

(
as†i,pa

s
i,p − bs†i,pb

s
i,p

)
. (14)

The derivation can be found in standard textbooks. The conservation law corresponds to fermion number conservation
for each of the two fermion species independently .
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• External lines

Aµ |γ(p, λ)⟩ =
p

= ϵ(p, λ), ⟨γ(p, λ|Aµ =

p

= ϵ∗(p, λ),

ψi |fi(pj , s)⟩ =
pj = usi (pj), ⟨fi(pj , s)| ψ̄i =

pj = ūsi (pj),

ψ̄i |f̄i(pj , s)⟩ =
pj = v̄si (pj), ⟨fi(pj , s)| ψ̄i =

pj = vsi (pj),

• Propagators

µ ν
p

= − i

p2 + iϵ

(
gµν − (1− ξ)

pµpν
p2

)
, photon propagator

p
=

i(/p+m)

p2 −m2 + iϵ
, fermion propagator

• Vertex

µ

fi

f̄i

= − ieγµ.

3. The diagrams that contribute to the process are

µ

ν

p1 p3

p2 p4

fi

l1

f̄i

+

µ

ν

p1 p3

p2 p4

fi

l2

f̄i

= iM(t)
i + iM(u)

i = iMi (15)

with l1 = p1 − p3 and l2 = p1 − p4.

4. The amplitudes are

iM(t)
i = v̄s2i (p2)(−ieγν)

i(/l1 +m)

l21 −m2
(−ieγµ)us1i (p1)ϵ

∗
ν(p4, λ4)ϵ

∗
µ(p3, λ3), (16)

iM(u)
i = v̄s2i (p2)(−ieγν)

i(/l2 +m)

l22 −m2
(−ieγµ)us1i (p1)ϵ

∗
ν(p3, λ3)ϵ

∗
µ(p4, λ4), (17)

where the fermion and antifermion in the initial state must have the same mass, and m = m1 or m = m2 according to
the nature of the incoming fermion.

The unpolarized amplitude is obtained averaging over the spins of the initial fermions and summing over the polariza-
tions of the final photons, using the identities∑

s=1,2

uspū
s
p = /p+m

∑
s=1,2

vspv̄
s
p = /p−m (18)

and performing the sum over photon polarization as suggested in the assignment.

Setting mi = 0 the result becomes independent of the species of incoming fermion. So, regardless of the nature of the
incoming fermion pair we get

|M̄i|2 =
1

4

∑
s1,s2

∑
λ3,λ4

|Mi|2 (19)

=
e4

4

{
1

l41
Tr

[
/p2γ

ν/l1γ
µ
/p1γ

µ′
/l1γ

ν′
]
gµµ′gνν′ +

1

l42
Tr

[
/p2γ

ν/l2γ
µ
/p1γ

µ′
/l2γ

ν′
]
gνν′gµµ′ (20)

+
1

l21l
2
2

Tr
[
/p2γ

ν/l1γ
µ
/p1γ

µ′
/l2γ

ν′
]
gµν′gνµ′ +

1

l21l
2
2

Tr
[
/p2γ

ν/l2γ
µ
/p1γ

µ′
/l1γ

ν′
]
gµν′gνµ′

}
. (21)
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Using the identities

γµγαγβγµ = 4gαβ

γµγαγµ = −2γα

γµγαγβγδγµ = −2γδγβγα
(22)

we get

|M̄i|2 = 8e4
[
1

l21
(p1 · p3)(p2 · p3) +

1

l22
(p1 · p4)(p2 · p4)− 2(p1 · p2)

(
(p3 · p4)− (p1 · p3)− (p1 · p4)

)]
. (23)

The last term is seen to vanish in the massless case: indeed, using momentum conservation

p2 = p3 + p4 − p1 (24)

so, squaring both sides of the equation and using p2i = 0 for all i,

0 = p3 · p4 − p1 · p3 − p1 · p4. (25)

We thus find

|M̄i|2 = 8e4
[
(p1 · p3)(p2 · p3)

(p1 − p3)2
+

(p1 · p4)(p2 · p4)
(p1 − p4)2

]
. (26)

5. Defining the Mandelstam variables as

s = (p1 + p2)
2 = (p3 + p4)

2 = 2(p1 · p2) = 2(p3 · p4),
t = l21 = (p1 − p3)

2 = (p4 − p2)
2 = −2(p1 · p3) = −2(p2 · p4),

u = l22 = (p1 − p4)
2 = (p3 − p2)

2 = −2(p1 · p4) = −2(p2 · p3),
(27)

we find

|M̄i|2 = 2e4
(
u

t
+
t

u

)
. (28)

6. The diagrams that contribute to the process are the following

µ

ν

k1 k3

k2 k4

f̄i

l1

fi

+

µ

ν

k1 k3

k2 k4

f̄i

l2

fi

= iM(t),cross
i + iM(u),cross

i = iMcross
i , (29)

with l1 = k1 − k3 and l2 = k3 − k2. It is apparent that the amplitudes can be obtained from those computed at point
(5) by performing the substitutions

p1 → −k3 (30)

p2 → −k4 (31)

p3 → −k1 (32)

p4 → −k2, (33)

so that
iM

{
γ(k1) + γ(k2) → fi(k4) + f̄i(k3)

}
= iM

{
f̄i(−k4) + fi(−k3) → γ(−k1) + γ(−k2)

}
(34)

(crossing symmetry).

This implies

t→ t, u→ u (35)
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Hence
iMcross

i = iMi (36)

However, if we cannot distinguish the nature of the fermions we must keep into account the fact that at point (5) the
fermions were incoming (so the result was the same independent of which fermion enters the process) while now the
fermions are outgoing (so we must sum over the possible final states). The reason is the same why we average over
intial polarizaton but sum over final ones.

Hence, the result is now multiplied by a factor 2 in comparison to that of point (6):

|M̄cross|2 =
∑
i

|M̄cross
i |2 = 4e4

(
u

t
+
t

u

)
(37)

7. In the case m1 = m2 = 0 the Dirac part of the lagrangian can be written as

L
D
= ψ̄1i /Dψ1 + ψ̄2i /Dψ2 = ψ̄1,Li /Dψ1,L + ψ̄1,Ri /Dψ1,R + ψ̄2,Li /Dψ2,L + ψ̄2,Ri /Dψ2,R (38)

= Ψ̄Li /DΨL + Ψ̄Ri /DΨR, (39)

where we defined

Ψ =

(
ψ1

ψ2

)
. (40)

The symmetry now is

ΨL → Ψ′
L = ULΨL , ΨR → Ψ′

R = URΨR, (41)

where UL and UR are generic 2 × 2 unitary matrices, which in turn can be written as a 2 × 2 unitary matrix with
determinant equal to 1 (special unitary matrix) times a phase transformation.

Hence the symmetry is U(2)R ⊗ U(2)L = SU(2)R ⊗ U(1)R ⊗ SU(2)L ⊗ U(1)L symmetry.

Full score is given for noting that Ui are generic 2× 2 unitary matrices.

The Noether currents are

U(1)R,L : J µ
R,L = Ψ̄R,Lγ

µΨR,L,

SU(2)R,L : J a,µ
R,L = Ψ̄R,Lσaγ

µΨR,L

(42)

and the charges are

U(1)R,L : QR,L =

∫
d3xΨ†

R,LΨR,L,

SU(2)R,L : Qa
R,L =

∫
d3xΨ†

R,LσaΨR,L,

(43)

where σi are Pauli matrices.

The commutation relations are

[QR,L, QL,R] = [QR,L, Q
a
L,R] = [Qa

R,L, Q
b
L,R] = 0. (44)

[Qa
R,L, Q

b
R,L] = iϵabcQ

c
R,L. (45)

Full score is given for just stating that the commutation relations between the charges are the same as the commutation
relations of the generators of the unitary transformations.
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