Quantum Field Theory I: written test
solution

September 27, 2017

1. Consider the following Lagrangian:
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The Feynman Rules for this theory are the following:
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2. The process
e(p1) + v (p2) — e(p3) + 7 (pa) (6)

proceeds at tree level through the single s channel Feynman diagram depicted in Fig.

The corresponding matrix element is

a2
iM = i (p3) 1 (1=75) v (04) B (2) 7 (1= 5) e (p1) )

The process
e(p1) +v(p2) = e(p3) + v (ps) (8)



Figure 1: Feynman diagram for the e, U scattering process

also proceeds at leading order through a single Feynman diagram, the v channel diagram
depicted in Fig.

Figure 2: Feynman diagram for the e, v scattering process
The matrix element is in this case

a2
iMy = e (p3) 7 (1= 75) s (p2) B (p) Y (1= 75) e (). 9)

3. We are now ready to evaluate the square modulus of the matrix element for each process,
and to perform the sum over polarizations. For the matrix element Eq. , we obtain:
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while with similar steps we get the analogous result for the matrix element, Eq. @
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4. First of all,in order to evaluate the phase space in the laboratory reference frame, we write



down the kinematics for this 2 — 2 process
p1 = (me,0,0,0)
= (F,,0,0,E,)
= (Ee, Pe)
pa = (P4, P4) -
In general, the phase space is given by
_ dPps d*py
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which becomes in our case, by performing the integration over py with the three-dimensional
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delta constraint
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with p'= F,Z and
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Now, using the hints, we further simplify this expression by integrating over cos 6 using the
energy conservation delta, and by changing variables from [p,| to the energy E.. We get
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where cos 6y is the solution to the equation py = E, + m. — E. with p4 given by Eq. ,
and the result does not depend on it.
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Finally, the flux factor is
o = 44/ (p1 - p2)? = 4mE,. (20)

. We are now ready to express the differential cross section for the two processes Eq. @ and
Eq. in terms of y. We get
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where we also defined y,,, = 7]515

. In the limit m, — 0, we can rewrite the Lagrangian in terms of the field doublet ¥ = (i)

as
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Using the known expression of the Pauli matrices, we can rewrite Eq. as
1 e
Z = _ZFMVFMV+¢(ZaI+7# (1_’75)0—1) 1/]7 (24)

where I and oy are respectively the identity and the first Pauli matrix. It is now apparent
that the Lagrangian Eq. is invariant under the transformation

= ey (25)
and the transformation ‘
Q,Z) — 629 o1 17[}7 (26)
which corresponds to a global U(1) x U(1) symmetry.



