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1. Consider the following Lagrangian:

L = −1

4
FµνF

µν + ψ̄e
(
i/∂ −me

)
ψe+ ψ̄νi/∂ψν +gψ̄eγ

µ (1− γ5)ψνAµ+gψ̄νγ
µ (1− γ5)ψeAµ.

(1)
The Feynman Rules for this theory are the following:

−igαβ

p2 + iε
(2)

i
(
/p+me

)
p2 −m2

e + iε
(3)

i

/p+ iε
(4)

igγµ (1− γ5) (5)

2. The process
e (p1) + ν̄ (p2)→ e (p3) + ν̄ (p4) (6)

proceeds at tree level through the single s channel Feynman diagram depicted in Fig. 1.

The corresponding matrix element is

iMs =
ig2

s
ūe (p3) γµ (1− γ5) vν (p4) v̄ν (p2) γµ (1− γ5)ue (p1) . (7)

The process
e (p1) + ν (p2)→ e (p3) + ν (p4) (8)
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Figure 1: Feynman diagram for the e, ν̄ scattering process

also proceeds at leading order through a single Feynman diagram, the u channel diagram
depicted in Fig. 2.

Figure 2: Feynman diagram for the e, ν scattering process

The matrix element is in this case

iMu =
ig2

u
ūe (p3) γµ (1− γ5)uν (p2) ūν (p4) γµ (1− γ5)ue (p1) . (9)

3. We are now ready to evaluate the square modulus of the matrix element for each process,
and to perform the sum over polarizations. For the matrix element Eq. (7), we obtain:

1

4

∑
|M|2 =

g4

4s2
ūe (p1) γν (1− γ5) vν (p2) v̄ν (p4) γν (1− γ5)ue (p3)

ūe (p3) γµ (1− γ5) vν (p4) v̄ν (p2) γµ (1− γ5)ue (p1)

=
g4

4s2
Tr
[(
/p1

+me

)
γν (1− γ5) /p2

γµ (1− γ5)
]

Tr
[
/p4
γν (1− γ5)

(
/p3

+me

)
γµ (1− γ5)

]
=

16g4

s2

[
(p1)ν (p2)µ − gµν (p1 · p2) + (p1)µ (p2)ν + iεσνρµp

σ
1p

ρ
2

]
[
pν4p

µ
3 − gµν (p4 · p3) + pµ4p

ν
3 + iεηνλµ (p4)η (p3)λ

]
=

32g4

s2

[
(p1 · p4) (p2 · p3) + (p1 · p3) (p2 · p4) +

(
gησg

λ
ρ − gλσgηρ

)
pσ1p

ρ
2 (p4)η (p3)λ

]
=

64g4

s2
(p1 · p4) (p2 · p3) =

16g4

s2

(
u−m2

e

)2 (10)

while with similar steps we get the analogous result for the matrix element, Eq. (9)

1

4

∑
|M|2 =

64g4

u2
(p1 · p2) (p3 · p4) =

16g4

u2

(
s−m2

e

)2
. (11)

4. First of all,in order to evaluate the phase space in the laboratory reference frame, we write
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down the kinematics for this 2→ 2 process

p1 = (me, 0, 0, 0) (12)
p2 = (Eν , 0, 0, Eν) (13)
p3 = (Ee, ~pe) (14)
p4 = (p4, ~p4) . (15)

In general, the phase space is given by

dΦ =
d3~p3

(2π)3 2Ee

d3~p4

(2π)3 2p4

(2π)4 δ (Eν +me − Ee − p4) δ(3) (~p− ~pe − ~p4) , (16)

which becomes in our case, by performing the integration over ~p4 with the three-dimensional
delta constraint

dΦ =
p2
edped cos θ

8πEep4
δ (Eν +me − Ee − p4) (17)

with ~p = Eν ẑ and
p4 = |~p− ~pe| =

√
E2
ν + p2

e − 2peEν cos θ. (18)

Now, using the hints, we further simplify this expression by integrating over cos θ using the
energy conservation delta, and by changing variables from |~pe| to the energy Ee. We get

dΦ =
p2
edped cos θ

8πEep4

p4

peEν
δ (cos θ − cos θ0)

=
pedpe

8πEeEν
=

dEe
8πEν

, (19)

where cos θ0 is the solution to the equation p4 = Eν +me −Ee with p4 given by Eq. (18),
and the result does not depend on it.
Finally, the flux factor is

Φ0 = 4

√
(p1 · p2)2 = 4meEν . (20)

5. We are now ready to express the differential cross section for the two processes Eq. (6) and
Eq. (8) in terms of y. We get

dσ

dy eν̄→eν̄

=
g4

2πmeEν

(ym + 1− y)2(
1 + ym

2

)2 , (21)

dσ

dy eν→eν

=
g4

2πmeEν

1(ym
2 + 1− y

)2 , (22)

where we also defined ym = me
Eν

.

6. In the limit me → 0, we can rewrite the Lagrangian in terms of the field doublet ψ =

(
e
ν

)
as

L = −1

4
FµνF

µν + ψ̄

(
i/∂ γµ (1− γ5)

γµ (1− γ5) i/∂

)
ψ. (23)

Using the known expression of the Pauli matrices, we can rewrite Eq. (23) as

L = −1

4
FµνF

µν + ψ̄
(
i/∂I + γµ (1− γ5)σ1

)
ψ, (24)

where I and σ1 are respectively the identity and the first Pauli matrix. It is now apparent
that the Lagrangian Eq. (24) is invariant under the transformation

ψ = eiθIψ (25)

and the transformation
ψ = eiθ

′σ1ψ, (26)

which corresponds to a global U(1)× U(1) symmetry.
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