Quantum Field Theory I: written test solution

September 27, 2017

1. Consider the following Lagrangian:

$$
\begin{equation*}
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}_{e}\left(i \not \partial-m_{e}\right) \psi_{e}+\bar{\psi}_{\nu} i \not \partial \psi_{\nu}+g \bar{\psi}_{e} \gamma^{\mu}\left(1-\gamma_{5}\right) \psi_{\nu} A_{\mu}+g \bar{\psi}_{\nu} \gamma^{\mu}\left(1-\gamma_{5}\right) \psi_{e} A_{\mu} \tag{1}
\end{equation*}
$$

The Feynman Rules for this theory are the following:

$$
\begin{equation*}
\frac{-i g^{\alpha \beta}}{p^{2}+i \epsilon} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{i\left(\not p+m_{e}\right)}{p^{2}-m_{e}^{2}+i \epsilon} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
i g \gamma^{\mu}\left(1-\gamma_{5}\right) \tag{5}
\end{equation*}
$$

2. The process

$$
\begin{equation*}
e\left(p_{1}\right)+\bar{\nu}\left(p_{2}\right) \rightarrow e\left(p_{3}\right)+\bar{\nu}\left(p_{4}\right) \tag{6}
\end{equation*}
$$

proceeds at tree level through the single s channel Feynman diagram depicted in Fig. 1 . The corresponding matrix element is

$$
\begin{equation*}
i \mathcal{M}_{s}=\frac{i g^{2}}{s} \bar{u}_{e}\left(p_{3}\right) \gamma^{\mu}\left(1-\gamma_{5}\right) v_{\nu}\left(p_{4}\right) \bar{v}_{\nu}\left(p_{2}\right) \gamma_{\mu}\left(1-\gamma_{5}\right) u_{e}\left(p_{1}\right) \tag{7}
\end{equation*}
$$

The process

$$
\begin{equation*}
e\left(p_{1}\right)+\nu\left(p_{2}\right) \rightarrow e\left(p_{3}\right)+\nu\left(p_{4}\right) \tag{8}
\end{equation*}
$$

Figure 1: Feynman diagram for the $e, \bar{\nu}$ scattering process
also proceeds at leading order through a single Feynman diagram, the u channel diagram depicted in Fig. 2.

Figure 2: Feynman diagram for the e, ν scattering process
The matrix element is in this case

$$
\begin{equation*}
i \mathcal{M}_{u}=\frac{i g^{2}}{u} \bar{u}_{e}\left(p_{3}\right) \gamma^{\mu}\left(1-\gamma_{5}\right) u_{\nu}\left(p_{2}\right) \bar{u}_{\nu}\left(p_{4}\right) \gamma_{\mu}\left(1-\gamma_{5}\right) u_{e}\left(p_{1}\right) . \tag{9}
\end{equation*}
$$

3. We are now ready to evaluate the square modulus of the matrix element for each process, and to perform the sum over polarizations. For the matrix element Eq. (7), we obtain:

$$
\begin{align*}
& \frac{1}{4} \sum|\mathcal{M}|^{2}= \frac{g^{4}}{4 s^{2}} \bar{u}_{e}\left(p_{1}\right) \gamma_{\nu}\left(1-\gamma_{5}\right) v_{\nu}\left(p_{2}\right) \bar{v}_{\nu}\left(p_{4}\right) \gamma^{\nu}\left(1-\gamma_{5}\right) u_{e}\left(p_{3}\right) \\
& \bar{u}_{e}\left(p_{3}\right) \gamma^{\mu}\left(1-\gamma_{5}\right) v_{\nu}\left(p_{4}\right) \bar{v}_{\nu}\left(p_{2}\right) \gamma_{\mu}\left(1-\gamma_{5}\right) u_{e}\left(p_{1}\right) \\
&= \frac{g^{4}}{4 s^{2}} \operatorname{Tr}\left[\left(\not p_{1}+m_{e}\right) \gamma_{\nu}\left(1-\gamma_{5}\right) \not p_{2} \gamma_{\mu}\left(1-\gamma_{5}\right)\right] \\
& \operatorname{Tr}\left[\not p_{4} \gamma^{\nu}\left(1-\gamma_{5}\right)\left(\not p_{3}+m_{e}\right) \gamma^{\mu}\left(1-\gamma_{5}\right)\right] \\
&= \frac{16 g^{4}}{s^{2}}\left[\left(p_{1}\right)_{\nu}\left(p_{2}\right)_{\mu}-g_{\mu \nu}\left(p_{1} \cdot p_{2}\right)+\left(p_{1}\right)_{\mu}\left(p_{2}\right)_{\nu}+i \epsilon_{\sigma \nu \rho \mu} p_{1}^{\sigma} p_{2}^{\rho}\right] \\
& {\left[p_{4}^{\nu} p_{3}^{\mu}-g_{\mu \nu}\left(p_{4} \cdot p_{3}\right)+p_{4}^{\mu} p_{3}^{\nu}+i \epsilon^{\eta \nu \lambda \mu}\left(p_{4}\right)_{\eta}\left(p_{3}\right)_{\lambda}\right] } \\
&= \frac{32 g^{4}}{s^{2}}\left[\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+\left(g^{\eta}{ }_{\sigma} g^{\lambda}{ }_{\rho}-g^{\lambda}{ }_{\sigma} g^{\eta}{ }_{\rho}\right) p_{1}^{\sigma} p_{2}^{\rho}\left(p_{4}\right)_{\eta}\left(p_{3}\right)_{\lambda}\right] \\
&= \frac{64 g^{4}}{s^{2}}\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)=\frac{16 g^{4}}{s^{2}}\left(u-m_{e}^{2}\right)^{2} \tag{10}
\end{align*}
$$

while with similar steps we get the analogous result for the matrix element, Eq. (9)

$$
\begin{equation*}
\frac{1}{4} \sum|\mathcal{M}|^{2}=\frac{64 g^{4}}{u^{2}}\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right)=\frac{16 g^{4}}{u^{2}}\left(s-m_{e}^{2}\right)^{2} . \tag{11}
\end{equation*}
$$

4. First of all,in order to evaluate the phase space in the laboratory reference frame, we write
down the kinematics for this $2 \rightarrow 2$ process

$$
\begin{align*}
p_{1} & =\left(m_{e}, 0,0,0\right) \tag{12}\\
p_{2} & =\left(E_{\nu}, 0,0, E_{\nu}\right) \tag{13}\\
p_{3} & =\left(E_{e}, \vec{p}_{e}\right) \tag{14}\\
p_{4} & =\left(p_{4}, \vec{p}_{4}\right) . \tag{15}
\end{align*}
$$

In general, the phase space is given by

$$
\begin{equation*}
d \Phi=\frac{d^{3} \vec{p}_{3}}{(2 \pi)^{3} 2 E_{e}} \frac{d^{3} \vec{p}_{4}}{(2 \pi)^{3} 2 p_{4}}(2 \pi)^{4} \delta\left(E_{\nu}+m_{e}-E_{e}-p_{4}\right) \delta^{(3)}\left(\vec{p}-\vec{p}_{e}-\vec{p}_{4}\right) \tag{16}
\end{equation*}
$$

which becomes in our case, by performing the integration over \vec{p}_{4} with the three-dimensional delta constraint

$$
\begin{equation*}
d \Phi=\frac{p_{e}^{2} d p_{e} d \cos \theta}{8 \pi E_{e} p_{4}} \delta\left(E_{\nu}+m_{e}-E_{e}-p_{4}\right) \tag{17}
\end{equation*}
$$

with $\vec{p}=E_{\nu} \hat{z}$ and

$$
\begin{equation*}
p_{4}=\left|\vec{p}-\vec{p}_{e}\right|=\sqrt{E_{\nu}^{2}+p_{e}^{2}-2 p_{e} E_{\nu} \cos \theta} \tag{18}
\end{equation*}
$$

Now, using the hints, we further simplify this expression by integrating over $\cos \theta$ using the energy conservation delta, and by changing variables from $\left|\vec{p}_{e}\right|$ to the energy E_{e}. We get

$$
\begin{align*}
d \Phi & =\frac{p_{e}^{2} d p_{e} d \cos \theta}{8 \pi E_{e} p_{4}} \frac{p_{4}}{p_{e} E_{\nu}} \delta\left(\cos \theta-\cos \theta_{0}\right) \\
& =\frac{p_{e} d p_{e}}{8 \pi E_{e} E_{\nu}}=\frac{d E_{e}}{8 \pi E_{\nu}} \tag{19}
\end{align*}
$$

where $\cos \theta_{0}$ is the solution to the equation $p_{4}=E_{\nu}+m_{e}-E_{e}$ with p_{4} given by Eq. 18), and the result does not depend on it.
Finally, the flux factor is

$$
\begin{equation*}
\Phi_{0}=4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}}=4 m_{e} E_{\nu} \tag{20}
\end{equation*}
$$

5. We are now ready to express the differential cross section for the two processes Eq. (6) and Eq. (8) in terms of y. We get

$$
\begin{align*}
& \frac{d \sigma}{d y}_{e \bar{\nu} \rightarrow e \bar{\nu}}=\frac{g^{4}}{2 \pi m_{e} E_{\nu}} \frac{\left(y_{m}+1-y\right)^{2}}{\left(1+\frac{y_{m}}{2}\right)^{2}} \tag{21}\\
& \frac{d \sigma}{d y} \tag{22}\\
& e \nu \rightarrow e \nu
\end{align*}=\frac{g^{4}}{2 \pi m_{e} E_{\nu}} \frac{1}{\left(\frac{y_{m}}{2}+1-y\right)^{2}},
$$

where we also defined $y_{m}=\frac{m_{e}}{E_{\nu}}$.
6. In the limit $m_{e} \rightarrow 0$, we can rewrite the Lagrangian in terms of the field doublet $\psi=\binom{e}{\nu}$ as

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(\begin{array}{cc}
i \not \partial & \gamma^{\mu}\left(1-\gamma_{5}\right) \tag{23}\\
\gamma^{\mu}\left(1-\gamma_{5}\right) & i \not \partial
\end{array}\right) \psi .
$$

Using the known expression of the Pauli matrices, we can rewrite Eq. (23) as

$$
\begin{equation*}
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \not \partial I+\gamma^{\mu}\left(1-\gamma_{5}\right) \sigma_{1}\right) \psi \tag{24}
\end{equation*}
$$

where I and σ_{1} are respectively the identity and the first Pauli matrix. It is now apparent that the Lagrangian Eq. (24) is invariant under the transformation

$$
\begin{equation*}
\psi=e^{i \theta I} \psi \tag{25}
\end{equation*}
$$

and the transformation

$$
\begin{equation*}
\psi=e^{i \theta^{\prime} \sigma_{1}} \psi \tag{26}
\end{equation*}
$$

which corresponds to a global $U(1) \times U(1)$ symmetry.

