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Consider a theory with two massless Dirac fermions given by the following Lagrangian:

L = iψ̄1/∂ψ1 + iψ̄2/∂ψ2 +G
(
ψ̄1γ

µψ2

) (
ψ̄2γ

µψ1

)
(1)

where the field ψi (i = 1, 2) is defined as follows

ψi(x) =

∫
d3p

(2π)3
√

2Ep

∑
s

{
bsi (~p)u

s
i (p)e

−ipµxµ + cs
†

i (~p)vsi (p)e
ipµxµ

}
. (2)

The annihilation and creation operators satisfy the following anti-commutation relation:

{bsi (~p), br
†

i (~k)} = {csi (~p), cr
†

i (~k)} = (2π)3δsrδ(3)(~p− ~k). (3)

(1) Let us first write down the Feynman rules for this theory. The external fermion
lines follow the following rules

ψi|f(p, s)〉 =
p

= usi (p) 〈f(p, s)|ψ̄i =
p

= ūsi (p)

ψ̄i|f̄(p, s)〉 =
p

= v̄si (p) 〈f̄(p, s)|ψi =
p

= vsi (p),

while the fermion propagator and the 4-Fermi vertex are respectively given by

µ νp
=

i/pi
p2i + iε

, (4)

a b

c d

= iG(γµ)ac(γ
µ)bd, (5)

where the black line denotes fermion 1 and the red line fermion 2.

As one can extract from the Lagrangian, the real constant G has a dimension [m]−2

and therefore the theory is not renormalizable.

(2) The Lagrangian is invariant under the following transformation:

ψi −→ ψ
′

i = e−iqiψi. (6)

The symmetry transformation form a [U(1)]qi group which is associated to the
conservation of the charge qi of the fermion i. Since there are two conserved charges,
the global symmetry group is therefore given by [U(1)]q1 ⊗ [U(1)]q2 .
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The Lagrangian is also invariant under the global chiral transformation:

ψi −→ ψ
′

i = e−iqγ5ψi. (7)

Note that this only holds if both the ψi are transformed at once.

Hence the overall symmetry is [UV (1)]q1 ⊗ [UV (1)]q2 ⊗ [UA(1)] .

The Noether current corresponding to the vector symmetries is given by the follow-
ing definition:

J µ
i =

∂L
∂(∂µψi)

∆ψi, where
∂L

∂(∂µψi)
= iψ̄iγ

µ. (8)

The expression of ∆ψi can be derived from the infinitesimal transformation,

ψi −→ ψi + ∆ψi ⇐⇒ ∆ψi = −iqiψi (9)

Hence, the expression of the current is given by

J µ
i = qiψ̄iγ

µψi. (10)

For the axial symmetry one finds instead

JAµ =
2∑

1=1

ψ̄iγ
µγ5ψi. (11)

Let us now compute the expression of the corresponding conserved charges and
express the final result in terms of the creation and annihilation operators. For the
vector symmetries the Noether charge is defined as

Qi =

∫
d3xJ 0

i (x) = qi

∫
d3xψ†i (x)ψi(x) (12)

Expanding the above expression leads us to the following results

Qi = qi

∫
d3p

(2π)3
√

2Ep

∑
r,s

{
br

†

i (~p)bsi (~p)u
r†(p)us(p) + cri (−~p)cs

†

i (−~p)vr†(−p)vs(−p)
}

= qi

∫
d3p

(2π)3

∑
s

(
bs

†

i (~p)bsi (~p) + csi (−~p)cs
†

i (−~p)
)

(13)

= qi

∫
d3p

(2π)3

∑
s

(
bs

†

i (~p)bsi (~p)− cs
†

i (~p)csi (~p)
)
. (14)

In order to get the first line, we integrated over x then over the second momentum.
From the first to the second line, we used the fact that ur

†
(p)us(p) = vr

†
(p)vs(p) =

2Epδ
rs. Notice that by symmetry csi (−~p)cs

†
i (−~p) = csi (~p)c

s†
i (~p). To get to the last

line, we wrote csi (~p)c
s†
i (~p) in terms if its anti-commutation.

For the axial symmetry we analogously get

Q5 =
∑
i

∫
d3p

(2π)3

∑
s

si

(
bs

†

i (~p)bsi (~p) + cs
†

i (~p)csi (~p)
)
, (15)

where the eigenvalue of γ5 is equal to s for particles and to −s for antiparticles.
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(3) Considering the following processes f1(p1) + f2(p2)→ f1(p3) + f2(p4) and f1(p1) +
f̄2(p2)→ f1(p3)+ f̄2(p4), one can draw the Feynman diagrams and use the Feynman
rules to write down the corresponding expression of scattering amplitudes.

iMa(f1f2 → f1f2) =

p1 p3

p2 p4

= iG [ū2(p3)γ
µu1(p1)ū1(p4)γµu2(p2)] , (16)

iMb(f1f̄2 → f1f̄2) =

p1 p3

p2 p4

= iG [ū1(p3)γ
µv2(p4)v̄2(p2)γµu1(p1)] , (17)

where again, as in Eq. (5), the black line denotes a fermion of type 1 and the red
line a fermion of type 2, and the index on the spinors denote the species of fermion.

(4) We can now compute the square of the modulus of the unpolarized amplitudes given
by the above Feynman diagrams.

First, let us consider the process f1(p1) + f2(p2) → f1(p3) + f2(p4). Multiplying
Eq. (16) by its hermitian conjugate, summing over the polarization of the final
state and averaging over the polarization of the initial states, we end up with the
following result

|M̄a|2 =
1

4

∑
s3,s4

|Ma|2 =
G2

4
Tr
(
/p3γ

µ
/p1γ

ν
)

Tr
(
/p4γ

µ
/p2γ

ν
)

(18)

= 4G2 (pµ3p
ν
1 − (p3p1)g

µν + pν3p
µ
1) (pµ4p

ν
2 − (p4p2)g

µν + pν4p
µ
2) (19)

= 8G2 ((p1p2)(p3p4) + (p1p4)(p2p3)) . (20)

Taking a similar approach, Eq. (17) yields

|M̄b|2 =
1

4

∑
s3,s4

|Mb|2 =
G2

4
Tr
(
/p3γ

µ
/p4γ

ν
)

Tr
(
/p2γ

µ
/p1γ

ν
)

(21)

= 4G2 (pµ3p
ν
4 − (p3p4)g

µν + pν3p
µ
4) (pµ2p

ν
1 − (p2p1)g

µν + pν2p
µ
1) (22)

= 8G2 ((p1p4)(p2p3) + (p1p3)(p2p4)) . (23)

Expressing the results in terms of the Mandelstam variables (Eq. (24)), one can
clearly see that the two scattering amplitudes are related by crossing symmetry, by
a swap of s and u.

|M̄a|2 = 2G2
(
s2 + u2

)
, |M̄b|2 = 2G2

(
u2 + t2

)
. (24)

(5) Let us add an extra-contribution to the Lagrangian,

∆L = GT µT †µ, (25)
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where T µ is of the form

T µ ≡ λ1ψ̄1γ
µψ1 + λ2ψ̄2γ

µψ2. (26)

Let us then determine the values of the parameters λi such that the new Lagrangian
can be written in the following form

L = iψ̄1/∂ψ1 + iψ̄2/∂ψ2 +
G

4

∑
i,a,b,a′ ,b′

(
ψ̄aγ

µσiabψb
) (
ψ̄a′γ

µσi
a′b′
ψb′
)
. (27)

First, expanding Eq. (25) yields the following expression:

∆L = G
{
λ1λ

†
1(ψ̄1γ

µψ1)(ψ̄1γ
µψ1) + λ2λ

†
2(ψ̄2γ

µψ2)(ψ̄2γ
µψ2)

+ λ1λ
†
2(ψ̄1γ

µψ1)(ψ̄2γ
µψ2) + λ1λ

†
2(ψ̄1γ

µψ1)(ψ̄2γ
µψ2)

}
. (28)

Comparing the terms in the above equation to the expanded version of Eq. (27),
one finds the following system of equations:{

λ1λ
†
1 = λ2λ

†
2 = 1/4,

λ1λ
†
2 = λ2λ

†
1 = −1/4.

(29)

By solving this equation, we find that:

λ1 =
eiα

2
, λ2 = −eiα

2
. (30)

(6) In addition to the [U(1)]q1 ⊗ [U(1)]q2 symmetry, the new Lagrangian in Eq. (27)
possesses a more general symmetry given by the SU(2) group. Indeed, Eq. (27) can

be written in terms of a doublet Ψ =

(
ψ1

ψ2

)
in the following way

L = iΨ̄/∂IΨ + G̃
∑
i

(
Ψ̄γµσiΨ

) (
Ψ̄γµσiΨ

)
with G̃ = G/4, (31)

and one can notice that this expression is invariant under the transformation:

Ψ −→ Ψ
′
= eiθiσiΨ. (32)

The corresponding Noether current is then given by J a
µ = Ψγµσ

aΨ.

(7) Let us now compute the commutator of the Noether charges derived from question
(6). Using the definition of the canonical (anti)commutation relations {π(y),Ψ(x)} =
−iδ(3)(x− y) and the commutation relation defined by the Pauli matrices [σa, σb] =
2iεabcσc, it follows that

[Qa,Qb] = 2iεabcQc, (33)

where as usual, the charge Q is defined as:

Qa =

∫
d3xJ 0

a =

∫
d3xΨ†σaΨ. (34)
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(8) There are now four new Feynman rules, corresponding to the four terms in Eq.(28):

a b

c d

= iG(γµ)ac(γ
µ)bd. (35)

a b

c d

= iG(γµ)ac(γ
µ)bd. (36)

a b

c d

= iG(γµ)ac(γ
µ)bd. (37)

a b

c d

= iG(γµ)ac(γ
µ)bd. (38)

These differ from the previous rule because now a fermion-antifermion pair of either
type can annihilate and then produce a fermion-antifermion pair again of either
type, thus giving the four listed combinations, while the vertex Eq. (5) only allowed
annihilation of a fermion of type 1 and an antifermion of type 2, with creation of a
fermion of type 2 and an antifermion of type 1, and all the crossings obtained from
this by turning an incoming fermion into an outgoing antifermion and conversely.
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