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Consider a massless theory given by the following Lagrangian:

L = −1

4
FµνF

µν + i
∑
i=1,2

ψ̄i/∂ψi +
∑
i=1,2

ψ̄i /A (a+ bγ5)ψi, (1)

where Fµν is the Maxwell field strength and ψ is the Dirac fermion field.

• The Maxwell field tensor is defined as Fµν = ∂[µAν], where the expression of the
photon field is given by

Aµ(x) =

∫
d3p

(2π)3
√

2Ep

∑
λ

(
εµ,λ(p)a~p,λ e−ip

µxµ + ε∗µ,λ(p)a
†
~p eip

µxµ
)
. (2)

• The Dirac fermion field ψi is defined as follows

ψi(~x, t) =

∫
d3p

(2π)3
√

2Ep

∑
si

(
bsi~p u

si
i (p)e−ip

µxµ + c
s†i
~p v

si
i (p)eip

µxµ
)
, (3)

with the annihilation and creation operators satisfying the following anticommuta-
tion relation:

{bs~p, br
†

~k
} = {cs~p, cr

†

~k
} = (2π)3δsrδ(3)(~p− ~k). (4)

(1) Let us first write down the Feynman rules of the theory.

(a) External lines:

ψi|fi(p, s)〉 ≡ p
= usii (p), 〈fi(p, s)|ψ̄i ≡ p

= ūsii (p),

ψ̄i|f̄i(p, s)〉 ≡ p
= v̄sii (p), 〈f̄i(p, s)|ψi ≡ p

= vsii (p),

Aµ|γ(p, s)〉 ≡
p

= εµ(p, s), 〈γ(p, s)|Aµ ≡ p
= ε∗µ(p, s). (5)

(b) Propagators:

Fermion :
p

=
i/p

p2 + iε
(6)

Photon :
µ νp

= − i

p2 + iε

[
gµν − (1− ξ)pµpν

p2

]
(7)

In the expression of the photon propagator, ξ parametrizes a set of covariant
gauges (for a Feynman gauge, ξ = 1).
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f1(p1, s1)

f̄1(p2, s2)

f3(p3, s3)

f̄4(p4, s4)

k = (p1 + p2)

iMs

ν µ

Figure 1: Leading non-vanishing diagrams for f1f̄1 −→ f2f̄2.

(c) Vertex:

µ = iγµ (a+ bγ5)

(2) The energy-momentum tensor for this theory is given by:

T µν =
∂L

∂(∂µAλ)
∂νAλ +

∑
i=1,2

∂L
∂(∂µψi)

∂νψi − δµνL (8)

= −F µλ∂νAλ + i
∑
i=1,2

ψ̄iγ
µ∂νψi − δµνL. (9)

The Hamiltonian density H = T 00 is then given by:

H = −F 0λȦλ + i
∑
i=1,2

ψ†i ψ̇i − g00L (10)

= FµνF
µν − F 0λȦλ + i

∑
i=1,2

ψ̄i~γ ~∇ψi −
∑
i=1,2

ψ̄i /A (a+ bγ5)ψi (11)

=
1

2

(
F ijF ij + F 0iF 0i

)
+ i

∑
i=1,2

ψ̄i~γ ~∇ψi −
∑
i=1,2

ψ̄i /A (a+ bγ5)ψi, (12)

where the last step holds assuming A0 = 0

(3) Let us now compute the scattering amplitude of the process f1f̄1 → f2f̄2. As shown
in Fig.1, only one single diagram contribute to such a process at leading order. Using
the Feynman rules presented above, the scattering amplitude iMs (p1, p2; p3, p4)–
that for brevity we simply denote by iMs–can be written as:

iMs = ūs32 (p3) [γµ (a+ bγ5)] v
s4
2 (p4)

(
igµν
k2

)
us11 (p1) [γν (a+ bγ5)] v̄

s2
1 (p2) (13)

=

(
i

s

)
ūs32 (p3) [γµ (a+ bγ5)] v

s4
2 (p4)u

s1
1 (p1) [γµ (a+ bγ5)] v̄

s2
1 (p2) (14)
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Taking the modulus square of the above amplitude leads to the following expression:

|Ms|2 =
1

s2
Tr {v̄s44 (p4) [γν (a+ bγ5)]u

s3
2 (p3)ū

s3
2 (p3) [γµ (a+ bγ5)] v

s4
2 (p4)}

×Tr {v̄s21 (p2) [γν (a+ bγ5)]u
s1
1 (p1)ū

s1
1 (p1) [γµ (a+ bγ5)] v

s2
1 (p2)} . (15)

Since we are considering an unpolarized process, we have to average over the polar-
ization of the initial state fermions and sum over the polarization of the final state
fermions. This yields:

|M̄s|2 =
1

4s2
Tr
{
/p4 [γν (a+ bγ5)] /p3 [γµ (a+ bγ5)]

}
×Tr

{
/p2 [γν (a+ bγ5)] /p1 [γµ (a+ bγ5)]

}
, (16)

where to go from Eq. (15) to Eq. (16) we used the completeness relations which in
the massless case are given by:∑

s

ūs(p)us(p) =
∑
s

v̄s(p)vs(p) = /p. (17)

Each trace appearing in Eq. (16) can therefore be simplified as follows:

Tr
{
/pi [γ

ν (a+ bγ5)] /pj [γµ (a+ bγ5)]
}

= a2Tr
(
/piγ

ν
/pjγ

µ
)

(18)

+2(ab)Tr
(
/piγ

ν
/pjγ

µγ5

)
+ b2Tr

(
/piγ

νγ5/pjγ
µγ5

)
Using the properties of γ5, specifically γ5γµ = −γµγ5 and (γ5)2 = I, and factoring
out the momenta from the trace, we arrive at the following expression

Tr
{
/pi [γ

ν (a+ bγ5)] /pj [γµ (a+ bγ5)]
}

=
(
a2 + b2

)
(pi)α (pj)β Tr

(
γαγνγβγµ

)
(19)

+ 2(ab) (pi)α (pj)β Tr
(
γαγνγβγµγ5

)
.

The trace identities can now be applied to further simplify the above expressions.
For a generic trace, doing so yields to the following expression

Tr
{
/pi [γ

ν (a+ bγ5)] /pj [γµ (a+ bγ5)]
}

= 4
(
a2 + b2

) (
pµi p

ν
j + pνi p

µ
j − gµν(pipj)

)
(20)

+ 8i(ab)εανβµ (pi)α (pj)β ,

where εανβµ is the Levi-Civita tensor and (pipj) represents the standard dot product
between the two momenta pi and pj. It follows from the above expression that
Eq. (16) can be written as

|M̄s|2 =
4

s2

[(
a2 + b2

)
(pµ4p

ν
3 + pν4p

µ
3 − gµν(p3p4)) + 2i(ab)εανβµ (p4)α (p3)β

]
(21)

×
[(
a2 + b2

)
((p2)µ(p1)ν + (p2)ν(p1)µ − gµν(p3p4)) + 2i(ab)εσνρµp

σ
2p

ρ
1

]
Expanding the above expression and performing some algebraic simplifications, we
arrive to the following expression:

|M̄s|2 =
8

s2

[(
a2 + b2

)2
((p1p3)(p2p4) + (p1p4)(p2p3))− 2εανβµεσνρµ (p4)α (p3)β p

σ
2p

ρ
1

]
(22)
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We can get rid of the Levi-Civita tensors by recalling that:

εανβµεσνρµ = −2
(
gασg

β
ρ − gαρ gβσ

)
. (23)

Plugging Eq. (23) into Eq. (22) and performing some simplifications, one can show
that the final expression of the amplitude square is given by the following:

|M̄s|2 =
8

s2
[A(a, b)(p1p3)(p2p4) +B(a, b)(p1p4)(p2p3)] . (24)

were we defined A and B as:

A(a, b) = (a2 + b2)2 + 4(ab)2, B(a, b) =
(
a2 − b2

)2
. (25)

(4) Let us now express the above amplitude in terms of the Mandelstam variables.
Recall that in the massless case, the Mandelstam variables are defined as :

s = 2(p1p2) = 2(p3p4), t = 2(p1p3) = 2(p2p4), u = 2(p1p4) = 2(p2p3). (26)

Using these definitions, it is straightforward to see that Eq. (24) becomes

|M̄s|2 =
64

s2
[
A(a, b) t2 +B(a, b)u2

]
. (27)

(5) By inspecting Eq. (24), it is clear that upon swapping the momenta in the final
states A and B are interchanged. Hence, the amplitude is invariant only if A = B
which in turn holds only if a = 0 or b = 0.

The forward-backward asymmetry is given by

AFB =
|M̄s (p1, p2; p1, p2) |2

|M̄s (p1, p2; p2, p1) |2
, (28)

in which the set of momenta appearing in the initial states are the same as the ones
appearing in the final states. Using Eq. (24), we see that:

AFB =
(a2 − b2)2

(a2 + b2)2 + 4(ab)2
. (29)

Eq. (29) shows that for a generic values of a and b where a 6= ±b, there is an
asymmetry between the two amplitudes.

This vanishes when a = ±b, AFB and it is equal to one when a = 0 or b = 0. The
two cases in which a = 0 or b = 0 correspond to having only vector or only axial
vector couplings. The cases in which a = ±b correspond to having only V + A or
only V − A couplings, i.e. to having only couplings that involve the ψ+ or the ψ−
field combination (see the next question).

(6) Let us finally express the Lagrangian given in Eq. (1) in terms of ψ±i = P±ψi
where the projector is defined as P± = (1± γ5)/2. Doing so leads to the following
expression

L = −1

4
FµνF

µν + i
∑
i=1,2

ψ̄+
i
/∂ψ+

i + i
∑
i=1,2

ψ̄−i /∂ψ
−
i (30)

+ (a+ b)
∑
i=1,2

ψ̄+
i
/Aψ+

i + (a− b)
∑
i=1,2

ψ̄−i /Aψ
−
i .
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This means that the Lagrangian splits into the sum of a Lagrangian for the ψ− field
only and a Lagrangian for the ψ+ field only. These two field have different couplings
to the gauge field, equal to a + b and a − b respectively. The cases considered in
the previous problem are seen to correspond to the couplings of the ψ± fields being
the same in magnitude (a = 0 or b = 0) or to one of the two couplings being zero
(a = b or a = −b).
If we put together the fields ψ1 and ψ2 in a two-component complex vector

ψ± =

(
ψ±1
ψ±2

)
(31)

then the Lagrangian can be rewritten as

L = −1

4
FµνF

µν + iψ̄+/∂ψ+
i + (a+ b) ψ̄+ /Aψ+ + (a− b) ψ̄− /Aψ−.

It is clear that this is invariant upon any transformation of the form

ψ± −→ U±ψ± (32)

where U± are two independent 2x2 unitary matrices that transform the fields ψ+
i

and ψ− respectively. A 2x2 unitary matrix can be decomposed into the product of
a unitary matrix with determinant equal to 1 (SU(2)) times a phase transformation
(U(1)). The overall symmetry is thus U(2)xU(2)=SU(2)xU(1)xSU(2)xU(1).

The Noether currents are

J µ,± = ψ̄±γµψ±; J µ,±
a = ψ̄±σaγ

µψ±, (33)

where σa are Pauli matrices acting on the two-component complex vectors Eq. (31).
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