QUANTUM FIELD THEORY 1

Solution
September 22nd, 2021

Consider a massless theory given by the following Lagrangian:

L= —iFM,,F“” +i > b+ Y bk (a+bys) (1)

i=1,2 i=1,2
where F),,, is the Maxwell field strength and % is the Dirac fermion field.

e The Maxwell field tensor is defined as F),, = 0, A,), where the expression of the
photon field is given by

1) = [ Gz 2 (Gl 7 i) 2

e The Dirac fermion field v); is defined as follows

w@n = [ ot 3 (B ple e L p)er ), (3)
o 2) ,/2E P ’
with the annihilation and creation operators satisfying the following anticommuta-
tion relation:
S TT S T‘T ST ond 7
{05, 07 } ={cp et } = (2m)36°T 6P (7 — k). (4)
(1) Let us first write down the Feynman rules of the theory.

(a) External lines:

Ulhips) = e =ule), (filps)lih = ey = (),
Ulfips) = e =T, (s = e = (),

A(p,s)) =~ pe=eup,s), (1P s)ldy = o= €pys). ()

(b) Propagators:

7
Fermion : e o — P - (6)
j% p? + i€
i DPuPv
Photon : €A AANANe = ——— g — (1 — &) 7
oton h D by D% +ie 9u ( £) P2 (7)

In the expression of the photon propagator, & parametrizes a set of covariant
gauges (for a Feynman gauge, £ = 1).
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Figure 1: Leading non-vanishing diagrams for f,fi — fafo.

(¢) Vertex:

po =" (a+bys)

(2) The energy-momentum tensor for this theory is given by:

oL oL
= g+ S = g - 8
50 2 500 ©
= —F"9,Ay +1i Z Y O — 64, L. (9)
i=1,2

The Hamiltonian density H = T is then given by:

H=—F" A +iY ol —g"L (10)
i=1,2
= F, P — FPAy+0 ) 0V — > i (a+bys) ¢ (11)
i=1,2 i=1,2
1 L . . S _
_ = ©j 1] 0i 1704 . v L . X
= 5 (FUFY + FOF%) + zi;;mwz Z;Q@M (a+bys) i, (12)

where the last step holds assuming A° = 0

(3) Let us now compute the scattering amplitude of the process fifi — fofs. As shown
in Fig.1, only one single diagram contribute to such a process at leading order. Using
the Feynman rules presented above, the scattering amplitude i M, (p1, p2; p3, pa)—
that for brevity we simply denote by i M ,—can be written as:

M=) 0 o o) o540 (95 ) 0 ) B 0+ oo ) (1)

- (§> iy* (ps) [v" (a + 0ys)] v3* (pa)ui' (p1) [ (@ + 095)] 37 (2) (14)



Taking the modulus square of the above amplitude leads to the following expression:

M, = S%Tr {05 (pa) [v" (@ + bys)] u3® (pa)u5° (pa) [V (@ + bys)] v5* (pa) }
XTr {072 (p2) [v" (a + bys)] uy (p1)ui* (pr) [V (a + bys)] v (p2) } . (15)

Since we are considering an unpolarized process, we have to average over the polar-
ization of the initial state fermions and sum over the polarization of the final state
fermions. This yields:

1

M2 = ST {p, 1 (at b)) p, [ (a + b))}

xTr g, L (a -+ b)), b (a + 19)] (16)

where to go from Eq. (15) to Eq. (16) we used the completeness relations which in
the massless case are given by:

> @ (pu(p) = > 0 (p)v’(p) = p. (17)

Each trace appearing in Eq. (16) can therefore be simplified as follows:
Te {p, 0 (at+ b3)]p, 10" (0 + 01s)] | = 2T (p7p ") (18)
+2(ab)Tr (pﬂ”yﬁﬂ“%) + b°Tr (zzﬁﬂ”’y5pﬂ“’y5>

Using the properties of 75, specifically 75y* = —+#~® and (7°)? = I, and factoring
out the momenta from the trace, we arrive at the following expression

Tr {zﬁi [ (a+bv)] p, [v" (a + b%)]} = (a® +b%) (9i) o ()5 Tr (v*9"7"9")  (19)

+2(ab) (pi) () 5 Tr (V*9"7%7"75) -

The trace identities can now be applied to further simplify the above expressions.
For a generic trace, doing so yields to the following expression

Tr {l/’i " (a+bys)lp, 0" (a + b%)]} =4(a®+ V%) (p'p} + PVl — 9" (pip;)) (20)
+ 8i(ab)e™* (p;) , () 5

where 2P is the Levi-Civita tensor and (p;p,) represents the standard dot product
between the two momenta p; and p;. It follows from the above expression that
Eq. (16) can be written as

IM,* = % [(GQ + b%) (Dhph + pips — g (p3pa)) + 2i(ab)e™™* (py), (p3>5] (21)
X [(a® +0%) ((p2)u(P1)y + (02)u(D1) 0 — Guv(Ppa)) + 20(ab)egypupspl]

Expanding the above expression and performing some algebraic simplifications, we
arrive to the following expression:

M, | :5% [(a2 +52)7 ((p103) (p2pa) + (019a) (p23)) — 26 () (P3) 5 pgpﬂ

(22)



We can get rid of the Levi-Civita tensors by recalling that:

e gyon = —2 (959, — 9595) - (23)

Plugging Eq. (23) into Eq. (22) and performing some simplifications, one can show
that the final expression of the amplitude square is given by the following:

’M5’2 = % [A(a,b)(p1ps)(p2pa) + B(a, b)(p1pa) (p2ps)] - (24)

were we defined A and B as:
A(a,b) = (a® +6%)? + 4(ab)®,  Bla,b) = (a® — 1°)*. (25)

Let us now express the above amplitude in terms of the Mandelstam variables.
Recall that in the massless case, the Mandelstam variables are defined as :

§ = 2(p1p2) = 2(pspa); ¢ =2(p1ps) = 2(paps),  uw = 2(pips) = 2(paps).  (26)
Using these definitions, it is straightforward to see that Eq. (24) becomes

|M,|? = i—;i [A(a,b) t* + B(a,b) u*] . (27)

By inspecting Eq. (24), it is clear that upon swapping the momenta in the final
states A and B are interchanged. Hence, the amplitude is invariant only if A = B
which in turn holds only if a = 0 or b = 0.

The forward-backward asymmetry is given by

A o ‘Ms (p17p2;p17p2) ‘2
FB —

‘Ms (p17p2;p27p1) |2’
in which the set of momenta appearing in the initial states are the same as the ones
appearing in the final states. Using Eq. (24), we see that:

(a2 — b?)?
(a2 + b2)2 + 4(ab)?
Eq. (29) shows that for a generic values of a and b where a # =+b, there is an
asymmetry between the two amplitudes.

(28)

App =

(29)

This vanishes when a = +b, Apg and it is equal to one when a = 0 or b = 0. The
two cases in which @ = 0 or b = 0 correspond to having only vector or only axial
vector couplings. The cases in which a = £b correspond to having only V + A or
only V' — A couplings, i.e. to having only couplings that involve the v, or the ¢_
field combination (see the next question).

Let us finally express the Lagrangian given in Eq. (1) in terms of ¢ = Py
where the projector is defined as Py = (1 £ ~5)/2. Doing so leads to the following
expression

L= 2B P i S G0t 0 3 by (30)
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i=1,2 i=1,2



This means that the Lagrangian splits into the sum of a Lagrangian for the ¢ _ field
only and a Lagrangian for the ¢, field only. These two field have different couplings
to the gauge field, equal to a + b and a — b respectively. The cases considered in
the previous problem are seen to correspond to the couplings of the ¥, fields being
the same in magnitude (¢ = 0 or b = 0) or to one of the two couplings being zero

(a="bora=-b).

If we put together the fields ¢); and 15 in a two-component complex vector

()

then the Lagrangian can be rewritten as

1 - - o
L=—FuF"+ WrIYE + (a+ b)Yt AT + (a — b)Y~ Ay
It is clear that this is invariant upon any transformation of the form
F — US* (32)

where U* are two independent 2x2 unitary matrices that transform the fields ;"
and ¢~ respectively. A 2x2 unitary matrix can be decomposed into the product of
a unitary matrix with determinant equal to 1 (SU(2)) times a phase transformation

(U(1)). The overall symmetry is thus U(2)xU(2)=SU(2)xU(1)xSU(2)xU(1).

The Noether currents are
THE = pEhg T = ey, (33)

where o, are Pauli matrices acting on the two-component complex vectors Eq. (31).



