Solution of the exam of Theoretical Physics of September 2023

September 13, 2023

Real scalar field:
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1. The energy-momentum tensor is defined as
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The hamiltonian density is
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2. A theory is renormalizable or not according to the dimensionality of the coupling. In order to determine the dimension of
g we start from the fact that the action is dimensionless and therefore the Lagrangian density has dimension [£] = [M]*
where M is a mass unit. Remembering that [¢] = [M] we find
lg] = [M], (6)

therefore the theory is super-renormalizable.
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4. The numbers of loops L, of vertices V and external lines E in a theory with cubic coupling are related by L = 1+%(V—E ).

The given diagrams have E = 4 and therefore at tree level with L = 0 one gets V' = 2, i.e. only diagrams with two
vertices contribute to this process. Because in the given theory all lines entering a vertex are different, if the initial-
state particles are the same then also the final-state particles must be the same and the process is mediated by either
t channel or v channel excange of the third remaining particle. In other words, the diagrams are ¢1¢1 — ¢2¢o with ¢
or u channel ¢3 exchange, or the same but with ¢ and ¢3 interchanged.

5. The diagrams described in the previous point are
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where label 2 or 3 refers to the field in the propagator.
. The amplitudes iM® are
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The squared amplitudes are just the trivial square modulus of the r.h.s. of Eq. , given that all particles are scalars.

. Defining the Mandelstam variables as

s=(p1+p2)° = (p3s +ps1)°, (13)
t=(p1—p3)® = (p2 — p1)*, (14)
u=(p1 —p1)® = (p2 — p3)*, (15)
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. By the same reasoning as in point (4), now the final-state particles must be the same as the initial-state ones and the
nonvanishing amplitudes are those obtained from the Feynman diagrams
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It immediately follows that
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. It is clear that the diagrams in Eq. can be related to the ones in Eq. by

iMA{p1(p1) + ¢2(p2) — d1(p3) + P2(pa)} = iM{d1(p1) + ¢1(—p3) — d2(—p2) + ¢2(pa)} - (20)

In terms of momenta this is seen to correspond to

P2 — —Dp3, p3 — —DP2, (21)

and in terms of Mandelstam invariants to
s—=t, u—u. (22)

The amplitude is nonzero in the region in which it is possible to satisfy the momentum conservation Dirac delta that
fixes p1 +p2 = ps+ps. For the process of point (8), the initial-state and final-state particles are the same, and therefore
this can always be satisfied for any value of the incoming particle momenta, so, choosing for example the center-of-mass
frame in which the three momenta of the incoming particles are equal and opposite, p3 = —py, for any value

p=0; E;>my (23)
of p = |p] and the energies E7, Fs of the incoming particles.

Because these are tree-level amplitudes, they can only acquire an imaginary part if some propagator has a vanishing
denominator so that the ie prescription is effective. In question 6 the denominators are never zero, so the amplitudes
never get an imaginary part. This can only happen for the s-channel diagram of point (8), whenever s = m3, i.e. when

the energy of the incoming ¢, and ¢, particles is sufficiently high to produce an on-shell ¢3 particle.



