Solution of the exam of Theoretical Physics of September 2023

September 13, 2023

Real scalar field:

$$
\begin{equation*}
\phi_{i}(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}}\left(a_{p, i} e^{-i p x}+a_{p_{i}}^{\dagger} e^{i p x}\right) \tag{1}
\end{equation*}
$$

1. The energy-momentum tensor is defined as

$$
\begin{equation*}
T^{\mu}{ }_{\nu}=\sum_{i} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)} \partial_{\nu} \phi_{i}-\delta^{\mu}{ }_{\nu} \mathcal{L} . \tag{2}
\end{equation*}
$$

Using

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)}=\partial^{\mu} \phi_{i} \tag{3}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
T^{\mu}{ }_{\nu}=\sum_{i} \partial^{\mu} \phi_{i} \partial_{\nu} \phi_{i}-\delta^{\mu}{ }_{\nu} \mathcal{L} . \tag{4}
\end{equation*}
$$

The hamiltonian density is

$$
\begin{align*}
\mathcal{H} & =T^{00}=\sum_{j}\left(\partial^{0} \phi_{j} \partial^{0} \phi_{j}-\frac{1}{2} \partial_{\mu} \phi_{j} \partial^{\mu} \phi_{j}+\frac{1}{2} m_{j}^{2} \phi_{j}^{2}\right)-g \phi_{1} \phi_{2} \phi_{3} \\
& =\sum_{j}\left(\partial^{0} \phi_{j} \partial^{0} \phi_{j}-\frac{1}{2} \partial^{0} \phi_{j} \partial^{0} \phi_{j}-\frac{1}{2} \partial_{i} \phi_{j} \partial^{i} \phi_{j}+\frac{1}{2} m_{j}^{2} \phi_{j}^{2}\right)-g \phi_{1} \phi_{2} \phi_{3} \\
& =\frac{1}{2} \sum_{j}\left(\dot{\phi}_{j} \dot{\phi}_{j}+\vec{\nabla} \phi_{j} \cdot \vec{\nabla} \phi_{j}+m_{j}^{2} \phi_{j}^{2}\right)-g \phi_{1} \phi_{2} \phi_{3} . \tag{5}
\end{align*}
$$

2. A theory is renormalizable or not according to the dimensionality of the coupling. In order to determine the dimension of g we start from the fact that the action is dimensionless and therefore the Lagrangian density has dimension $[\mathcal{L}]=[M]^{4}$ where M is a mass unit. Remembering that $[\phi]=[M]$ we find

$$
\begin{equation*}
[g]=[M], \tag{6}
\end{equation*}
$$

therefore the theory is super-renormalizable.
3. - External lines

$$
\begin{equation*}
\phi|s(p)\rangle=\stackrel{p}{\xrightarrow[------]{\longrightarrow}}=1, \quad\langle s(p)| \phi=\stackrel{p}{\longrightarrow------}=1 \tag{7}
\end{equation*}
$$

- Propagators

$$
\begin{equation*}
\bullet \stackrel{p}{\bullet-}=\frac{i}{p^{2}-m_{i}^{2}+i \epsilon} \tag{8}
\end{equation*}
$$

- Vertex

4. The numbers of loops L , of vertices V and external lines E in a theory with cubic coupling are related by $L=1+\frac{1}{2}(V-E)$. The given diagrams have $E=4$ and therefore at tree level with $L=0$ one gets $V=2$, i.e. only diagrams with two vertices contribute to this process. Because in the given theory all lines entering a vertex are different, if the initialstate particles are the same then also the final-state particles must be the same and the process is mediated by either t channel or u channel excange of the third remaining particle. In other words, the diagrams are $\phi_{1} \phi_{1} \rightarrow \phi_{2} \phi_{2}$ with t or u channel ϕ_{3} exchange, or the same but with ϕ_{2} and ϕ_{3} interchanged.
5. The diagrams described in the previous point are

where label 2 or 3 refers to the field in the propagator.
6. The amplitudes $i \mathcal{M}^{(i)}$ are

$$
\begin{equation*}
i \mathcal{M}^{(i)}=i \mathcal{M}_{t}^{(i)}+i \mathcal{M}_{u}^{(i)}=(i g)^{2} \frac{i}{\left(p_{1}-p_{3}\right)^{2}-m_{i}^{2}}+(i g)^{2} \frac{i}{\left(p_{1}-p_{4}\right)^{2}-m_{i}^{2}} \tag{12}
\end{equation*}
$$

The squared amplitudes are just the trivial square modulus of the r.h.s. of Eq. 12 , given that all particles are scalars.
7. Defining the Mandelstam variables as

$$
\begin{align*}
s & =\left(p_{1}+p_{2}\right)^{2} \tag{13}\\
t & =\left(p_{3}+p_{4}\right)^{2}, \tag{14}\\
t & =\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2}, \tag{15}\\
u & =\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2}
\end{align*}
$$

we have

$$
\begin{equation*}
i \mathcal{M}^{(i)}=-g^{2}\left(\frac{i}{t-m_{i}^{2}}+\frac{i}{u-m_{i}^{2}}\right) \tag{16}
\end{equation*}
$$

8. By the same reasoning as in point (4), now the final-state particles must be the same as the initial-state ones and the nonvanishing amplitudes are those obtained from the Feynman diagrams

It immediately follows that

$$
\begin{align*}
& i \mathcal{M}_{s}=(i g)^{2} \frac{i}{\left(p_{1}+p_{2}\right)^{2}-m_{3}^{2}}=-i g^{2} \frac{i}{s-m_{3}^{2}} \tag{18}\\
& i \mathcal{M}_{u}=(i g)^{2} \frac{i}{\left(p_{4}-p_{1}\right)^{2}-m_{3}^{2}}=-i g^{2} \frac{i}{u-m_{3}^{2}} \tag{19}
\end{align*}
$$

9. It is clear that the diagrams in Eq. 10. can be related to the ones in Eq. 17) by

$$
\begin{equation*}
i \mathcal{M}\left\{\phi_{1}\left(p_{1}\right)+\phi_{2}\left(p_{2}\right) \rightarrow \phi_{1}\left(p_{3}\right)+\phi_{2}\left(p_{4}\right)\right\}=i \mathcal{M}\left\{\phi_{1}\left(p_{1}\right)+\phi_{1}\left(-p_{3}\right) \rightarrow \phi_{2}\left(-p_{2}\right)+\phi_{2}\left(p_{4}\right)\right\} . \tag{20}
\end{equation*}
$$

In terms of momenta this is seen to correspond to

$$
\begin{equation*}
p_{2} \rightarrow-p_{3}, \quad p_{3} \rightarrow-p_{2} \tag{21}
\end{equation*}
$$

and in terms of Mandelstam invariants to

$$
\begin{equation*}
s \rightarrow t, \quad u \rightarrow u \tag{22}
\end{equation*}
$$

10. The amplitude is nonzero in the region in which it is possible to satisfy the momentum conservation Dirac delta that fixes $p_{1}+p_{2}=p_{3}+p_{4}$. For the process of point (8), the initial-state and final-state particles are the same, and therefore this can always be satisfied for any value of the incoming particle momenta, so, choosing for example the center-of-mass frame in which the three momenta of the incoming particles are equal and opposite, $\vec{p}_{3}=-\vec{p}_{4}$, for any value

$$
\begin{equation*}
p \geq 0 ; \quad E_{i} \geq m_{i} \tag{23}
\end{equation*}
$$

of $p=|\vec{p}|$ and the energies E_{1}, E_{2} of the incoming particles.
11. Because these are tree-level amplitudes, they can only acquire an imaginary part if some propagator has a vanishing denominator so that the $i \epsilon$ prescription is effective. In question 6 the denominators are never zero, so the amplitudes never get an imaginary part. This can only happen for the s-channel diagram of point (8), whenever $s=m_{3}^{2}$, i.e. when the energy of the incoming ϕ_{1} and ϕ_{2} particles is sufficiently high to produce an on-shell ϕ_{3} particle.

