Solutions to the exam of QFT1 of 18 September
2025
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where the last equality is when writing in terms of the spinor doublet ¥ = (11, 15).

(1) The energy-momentum tensor is
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The Hamiltonian density is the 00’th component of this, and it is given by
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(2) In terms of ¢*, we can write the Lagrangian as
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Introducing o4 = %, the interaction Lagrangian in terms of ¢4 can be written as
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(3) The Feynman rules corresponding to this theory are the following: the propagators are given by
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The vertices are
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The vertices can be written without the Pauli matrices as
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The external lines are just the usual fermionic and scalar lines:
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(4) For fifo — f1f2, we have the following two processes:

(1) (2)
p— b 1k A
\A\r/v/ \L\‘/v/ 2
£ \E
2 ! 2 2 ' 1
o e o e
D2 ko D2 k1

For fifo — fifo we have the following two processes:
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(5) We take the fermion masses to go to zero, but the scalar masses to remain. For the neutral
current interaction (diagram (1)), we have:
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For the charged current diagram (diagram (2)), we have:
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The total, unpolarised, spin-averaged amplitude is given by
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Let’s calculate these four contributions separately:
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A similar calculation yields for the other three terms:
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where t = (p; — k1)? and u = (p; — k2)?, and we have made use of the trace identities of the
gamma matrices. Putting everything together, we obtain
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(6) For writing everything in terms of Mandelstams, the following relations are useful:
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The amplitude can then easily be rewritten as
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(7) In the limit of large scalar mass, the amplitude reduces to
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(8) We are asked to draw all 1-loop corrections to the two-point functions (i.e. the propagators) and
compute their divergence. This is D =4 — 2P, — Py.
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(9) The Lagrangian has an U(1) symmetry, corresponding to the conservation of fermion number,
and a SU(2) symmetry corresponding to a rotation of all the fields.

The U(1) symmetry is under the transformation
U =y (29)
and the associate Noether current is
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In order to expose the SU(2) symmetry, consider first a SU(2) transformation of the fermion
doublet: o
U =AU =270 (31)

where 6 = 07 is a three vector of length 6 and 7 is a unimodular vector.

Upon this transformation, the interaction term, using its form Eq. (3), transforms according to
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where we have used a three-vector notation for the Pauli matrices and the scalar fields. Using
the properties of the Pauli matrices, it is easy to see that
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where Rejj is a rotation of angle 6 about the axis 7. It immediately follows that the interaction
term is invariant if the scalar fields also transform as
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In order to determine the Noether current we write the infintesimal form of the transformations
Eq. (33,32)
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where M “ij is the generator of rotations about the a-th axis. We then immedtately find that
the Noether current is given by
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