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(A) EXERCISES

Exercise 2.1. By using only the canonical commutation relations (2.1),
show that the space-time ‘‘charges”, Pa, associated with the translation
current 6.1, P°'=jd3x Gcoa(r,x), generate the correct transformation
on the fields.

i[P* ¢(x)] = 3%¢(x) = 65 ¢(x) .
Exercise 2.2. Consider Lorentz transformations.
53F p(x) = (x*9% — xP3* + Z¥) ¢(x) .

Here %8 is the spin matrix appropriate to the field ¢(x). It specifies the
representation of Lorentz group under which ¢(x) transforms. %% =0 for

spin zero bosons; E(U)“ﬂ =—10U°‘B for spin —2- fermlons z] are the Dirac
indices gppropnélte to a 4-component fermion field and ¢*® = [y© ’yﬁ 1/21;
ap

E( wv) —g‘u g, —*g,, 5 for vector bosons (uv are the space-time indices
appropriate to a vector field). Under what conditions, on a translationally
invariant %, is the above a symmetry transformation of the theory? Show
that the conserved, canonical space-time current appropriate to Lorentz
transformation is

Mc“a.ﬁ(x) = xaﬂc“ﬁ(x) - xﬁﬂc"a(x) + 74 (x)Z*® ¢(x) .
By use of the canonical commutators (2.1), verify that the ‘“‘charges”
M = -"dsx M1, x) ,
generate the correct transfennations on the fields.

i(M*, ¢(x)] = §2F ¢(x) .

Exercise 2.3. Consider the Belinfante tensor @g*“ defined in (2.17). Show
that the Belinfante tensor is conserved when 0 ha js. Next show that the
charge P, defined in Exercise 2.1, are the same regardless whether they are
constructed from BB"“ or 6.1, Therefore for purposes of describing trans-
lations, 5" may be used instead of 6. **. 65 has additional advantages.
With the help of the equations of motion, as well as the condition for Lorentz
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covariance, derived in Exercise 2.2, show that BB‘"“ is symmetric in ¥ and o,
while Bc““ has this property only for spinless fields ¥ =9,

The Belinfante tensor takes on a significance over the canonical tensor in
connection with the space-time current associated with Lorentz transforma-
tion. Consider

MB“aﬂ(x) = x“BB‘"ﬁ(x) - xﬁﬂB‘"a(x) .

Show that M ‘“"ﬁ(x) is conserved when M_*%8(x), defined in Exercise 2.2,
possesses this property Also show that My ag (x), leads to the same charges
M as M ‘“’ﬁ(x) does. Hence Mg BaB can be used instead of M. #*F as the
space- tune current for Lorentz transformatmns however Mg u&p ; is much
simpler than M, w aﬁ, since the former contains no explicit spin term ™ Z"‘ﬁgb
The full 31gn1f1cance of the Belinfante tensor emerges when one asserts that
it is this energy-momentum tensor (rather than any other one) to which
gravitons couple in the Einstein theory of gravity, general relativity.

Exercise 2.4. By use of canonical expressions for Bc°° and Jo", as well as
the canonical commutators, derive the equal-time commutator between these
two operators, given in (2.18). Verify that the answer remains unchanged
when 0c°° is replaced by by 00

Exercise 2.5. Consider the scalar field Lagrangian.

L(x) = TO4(x) 9, (x) + gx* ¢(x) .

Construct the energy momentum tensor from the formula (2 11), and show
that it is not conserved. Evaluate the commutator [P (t), P'(¢t)] and verify
that it does not vanish. (When translation invariance holds this commutator
vanishes.) Construct the Lorentz current for this model, and verify that it
is conserved.

Exercise 2.6. Verify that (2.24) is the most general solution of (2.23b).
Hint: Multiply (2.23b) by y; and integrate over y,

Exercise 2.7. Consider the ETC of electromagnetic currents which hold in
scalar electrodynamics.

[ 790, %), 7°(0)] =0
[ 7900, x), J(0)] = S(0) 8(x) ,

[ J%(0, x), J(0)] =
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Here S(y) is a scalar operator. Rewrite this commutator in a Lorentz
covariant, but frame-dependent fashion by introducing the unit time-like
vector n*. Consider also

TJH(x)JY(0) = T*"(x;n) .
Show that this is not covariant, and construct a covariantizing seagull

T#”(x;n). Determine the seagull by requiring that T**(x) = T#"(x;n) +
T#%(x;n) be conserved.

Exercise 3.1. Consider the free boson propagator D(q)=i/(q* —m?).
By use of the BJL theorem verify the canonical commutation relations.

(600, x), $(0)] = i [6(0,x), $(0)] =

i[6(0, x), $(0)] = 8(x) .

Next consider the full propagator of renormalized fields. It may be written
in the form

° p(a?)
G(g) =i I da’® %
0 q —a

The spectral function p can be shown to be non-negative. (A renormahzed
field ¢ is proportionally related to the unrenormalized field ¢ by ¢ = z" 9.
In perturbation theory Z is cutoff dependent.) What can you deduce about
the vacuum expectation of the canonical commutators in the complete
theory?

Exercise 3.2. Consider the vacuum polarization tensor, which (formally) can
be written as

T*HP(q) = jd"x et * (0| T* J*(x)J%(0)| 0)

°° o(a?)
= (g'qu“‘qnqv)‘[ daz—z—‘“{
0 q —a

It can be shown that ¢(a®) has a definite sign. Extract the T product from
T*#¥(q) and calculate 0} J°(0, x), J'(O)] | 0) in terms of a(a?). (Do not
concern yourselves here with problems of convergence; these will be discussed
in Exercise 6.1.)
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Exercise 4.1. Show that

u ’ d*r rk + g# r#
a%(a) = 1-‘ 2m)* | ([r+al? —m?)? (r* —m?*)?
YT

This verifies (4.19b).

Exericse 4.2. Show that

A**Y(p,qla)

d*r
=z‘j Tr*/sv"“[r YR+ agy? +pgyP —ml”
(21[)4 i B B

X 7”[’37ﬁ + aﬁ‘Yﬁ_‘m] -1 7v[rﬁ7ﬁ + aﬁoyﬁ + qﬁ'yﬁ_,m]—l
~[rg7® + pgyP —m1 P rgy? —m1 (g7 — g7 —m 17

-1

> M8 4
8w

This verifies (4.21).

Exercise 4.3. Show that

a*r
i5(2")4 Tr 757“{[r37“ + a5 ~m1 7 Y L yP - pgyP -m] !

~[rg¥? + pg¥? —m17 Y rgvP - g7 - m1 !

|
— auvg
ar? € Pudg

This verifies (4.25¢).
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Exercise 5.1, Compute canonically the symmetric part of
jdsx [7%0,x), 7(0)]

in the quark-vector gluon model, where
iv, 0%y = my — g¥"y B,

Verify that the spin averaged, matrix element of that commutator, between
diagonal proton states is of the form

A8Yp* — p'pT) + BSY .

Exercise 5.2. Assume that the dispersion relation for T; needs one subtrac-
tion, performed at v =0, (w = o). Show that the ST sum rule reduces in
that instance to an uninformative relation between the subtraction term and
the ST.

Exercise 6.1. When the spectral function cr(a2 ), relevant to the vacuum
polarization tensor T**”, does not vanish as a*> - oo, the dispersive represen-
tation for T*#? given in Exercise 3.2 will not converge. Assuming that

lim o(@®)=4,

a  — oo

lim az(o(az) - A) =B,

a’—>oo

the following subtracted form for T*#” may be established

T**(q) = sd“x e’ * (0| T* J*(x)J*(0)|0)

0o a(a2)
= @*¢ —dty|crat | aet
am? a‘(q® —a”)

Here C is a subtraction constant, and 4m2 is the appropriate threshold for
the dlsperswe integral. Calculate the vacuum expectation value of the
[J°, L '] ETC, and show that a tnple derivative of the 8 function is present.
Hmt Let 0 (a®)=0(a®)—A - B/a*.
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Exercise 6.2. Consider T(p, q), defined by
T(p,q) = _‘d“x d*y e * 'Y (a| TA(x)B(¥)C(0)|B) ,
where & and f are arbitrary states. Show that

lim lim — peqoT(p,q)

qo_>m po—PM

= Idsx d3y e P X 18"V (q|[B(0, y), [4(0,x),C(0)]]|B)
What is the result if the limit is performed on opposite order,

lim lim — peqoT(p,q) ?

Dg—>0o0 (o —>oo

Exercise 7.1. Show that the invariant functions ﬁi, defined from

4

Cc*’(q,p) =I e X p|[J*(x), 7°(0)]]p)

(2m)?

g v
_(gl-“’...q q )Fl
- 2
q

/ p-q p-q F,
+(p“'—q“ 2)(1)”—4” q,)pq :
q .

are dimensionless. The state | p) is normalized covariantly.

Exercise 7.2. Compute i[D(t), P*] and i[D(t), M*Y], where D(t) is
the dilatation “charge”.

Exercise 7.3. By use of canonical ETC, show that

i[D(1), p(x)] = 8p d(x) ,
i[K%(t), §(x)] = 8c2¢(x) .

Here D(t) and K%(t) are dilatation and conformal ‘‘charges’ respectively.
Hint: Use the canonical formulas for the currents.
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Exercise 7.4. Consider a scalar field Lagrangian Zdepending on ¢ and 3"¢.
What is the most general form for % which is scale invariant? What is the
most general form that is conformly invariant? Derive §.*” for this con-
formly invariant theory. Since this is a spinless theory, 6.MY = 0" . What
is GHY? :

(B) SOLUTIONS

Exercise 2.1. It is clear that the argument of ¢(x) is inessential. Hence we
consider

i[P% ¢(0)] = Id-"y i[60°“(o,y),¢(0)1 .
(a) a=1

i[P',0(0)] = Vd3yil7°(0,y)9%O0,y), $(0)]
= Y3y i[7°(0, y) 9(0)] ¢°(0, y)

= | d®y 8(y) ¢°(0,y)

= ¢'(0) ,

(b) a=0_

i[P% ¢(0)] = fdsy i[7°(0,y)9°(0,y) — £(0,y), $(0)]

= ¢°(0) + fdsy (7°(0, ) i[9°(0, y), $(0)]

— i[£(0,y),$(0)] )

We now show that the second term in the above is zero. To do this, we
mtroduce the technique of functional differential with respect to ¢(0)
and 7 (0) By definition,

5 8 ¢, .
M = §(x) , ¢ ©,x) = a'g(x) ,

8'¢(0) 8'¢(0)
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§'n°(0, x) B 5'¢(0,x)
§se0) §8'1°(0)

"3%¢ (0 §'m°(0,

§ ’¢§ )X) . 1'7 f’ X) _ 8(x) .
6 7 (0) 5 n(0)

The quantity ¢° is considered to be a functional of both 7° and ¢. For any
functions F which depends on both ¢ and ¢* | the chain rule holds

) ,F(O,x) _ SF(0, x) 5(x) + 5F(.0,'x)
6 ¢(0) 5¢ - 69

9'8(x)

N §F(0,x) 8'¢°(0,x)
5¢° 8'¢(0)

8'F(0,y) _ 8F(0,x) 8'¢°(0,x)
8'1°(0) 8§¢° 8'n°(0)

Here & indicates the ordinary variational derivative; &' is the functional
derivative. Applying this formalism, gives

7°(0,y)i[¢°(0,y), $(0)] — i[£(0,y), $(0)]

5'9°(0,y)  8'2(0,y)
8'7%(0) 8'7%(0)

= 1%(0,y)

. 5'$°(0,y) §£(0,y) §¢°(0,y)
m (O’Y) I 0, - 0 r_0 =0
& m°(0) 53¢ & 77 (0)

The definition of 7° wasused: 7% =8§.%/8¢°.
(c) Note that we have established the stronger result

i[6.°%(t, y), ¢(t,x)] = ¢%(x)8(x—y) .
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Exercise 2.2.
8%
(a) 5%’52 = NMGﬁﬁqb“ +3?8ﬁ3¢ A
— k5% + E;%aaﬁ‘p
=, Lo 50 L
=m, [g#a¢ﬁ_gﬂﬁ¢a + (xaaﬁ_xﬁaa)¢# + za6¢u]
8 ¥ 8%
+ — (x*3%9p—xPo%¢) + —=*Fgp .
6¢ 6¢
By translation invariance, the above may be written as
8%
8L = x%PL — P L + m, TP ¥ +-8—<;z°fﬁ¢ + 7%¢f

- nfe*

| 8%
a“[g“axaﬁ? - ghxP¥1 + ﬂ“E“ﬂcp‘" + E;Eaﬁ
+ 7%¢f — nfoe .
Hence the condition for Lorentz covariance of the theory is

8%
nuz“%“ +—(8—(£E°‘6¢ = B¢ — n%¢f |

(b) In the notation of Section 2,
AMeB — xaguﬁ_cg_ xﬁgnag ,
and the canonical conserved current is
Mé‘aﬁ — ﬂ"ﬁfﬂtﬁ — AkaB
= qh(x%¢f — xPop2 + T®Bg) — x* MY - xBghe

= xR — xPo ke + bz
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(c) Consider
i [M(t,y), (1, )]
= iy°[0c°ﬁ(r,y), ¢(t,x)] — iyP[8.2%t, y), ¢(z,x)]
+iln°(6 ) 2 ¢(ny), (1, )] .
The commutators with §.°“ are evaluated in Exercise 2.1. Hence
i[M*(t,y), 91, %)]
= (x*3F¢(x) — xP3%¢(x) +Zp(x)8(x~y))
= 533¢(x)6(x—y) .
The desired result now follows.
Exercise 2.3.
@) 8% = 8.4 + 3, XM
xMa — _yMha — pAzBagy _ phyhag _ payig

Since XM® is explicitly anti-symmetric in Ag, 9, X ¥ does not contri-
bute to the divergence of BB"“ in M, nor does it contribute to the charges
Idsx BBoa(x ).
(b) 5" = ato® — gt

+ F0,[n"ZH%p — ghZreg — gaTMg] |

The only terms that are not explicitly symmetric in po are

1
% + —2—3,\[117‘2“%5]
«a 1 A sua 1 Avua
= 7h¢ +*{3A1r > ¢+-—2"1r 2570,

1 62 1
= nt¢® + -5-“8—({2”‘“¢ + -;177‘2‘“0‘())}\ .
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The equations of motion have been used. Next use the constraint on A
imposed by Lorentz covariance; see Exercise 2.2. We have

T + 33, [nh 2] = at* — S ke + gk
= %ﬂy’¢a + .!'z-ﬂa¢“ ,
= x“Bc“ﬁ - xﬁgcna + x@ %a,\,X}“‘ﬁ —xﬁ%a}\x"""‘
— Mcﬂaﬁ + %aA[X}“qua — X?\Maxﬁ]

1 yBea _ 1 pyauf _ _pyaf
+ 2 X > X | 7" ZT%¢ .
From the explicit form for X 7“”", we see that the last three terms cancel.
The total derivative term is the divergence in A of a tensor which is anti-

symmetric in uA; hence that object does not contribute to the divergence
in i, nor to charges.

Exercise 2.4,

(@) i[6.2°C¢, x), J,%(t, y)] = i[8,°°(s, ), n°(t, y)T?¢ (2, ¥)]

It

70, y)T?i[0.0°(t, %), ¢(t,y)]

+ i[0.°°(, x), 1° (£, )1 T2 9(t, y) .

The first commutator is evaluated as in Exercise 2.1. The second is expressed
in terms of functional derivatives. The result is

i[0.20(¢,x), Jo%(t, y)]1 = 7°(t,y)T?¢°(t, y) 8(x—y)
8'6.%°(z,x)

- — T?¢(t,y) .
d ¢(t,y) d

The functional derivative is now calculated from the formula for Bcoo( t, x).

8'6.°°(t,x) 8 9%, x) 8%t x)

, = n°(t,x) -5 .
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8'%(t,x) 8 £(t, x) 8L (t,x) 8§ ¢°(t,x)
p = 6(x—y) + -
8 o(t,y) 5¢ 5§¢° &'¢(n,y)
8L (t,x)
+ ——3'8(x~y)
8¢’
8'9%(t,x)

= 9, T (¢, x)8(x—y) + 7°(s, -
AT mY) 0 v

+ m(t,x)3'8(x~-y) .

We have used the equations of motion and the definition of 7*. It now
follows that

8'6.2°(¢, x)
8 ¢(t,y)

- —akﬂk(r’x)ﬁ(x—y) - "i(t’ X)aiﬁ(x—Y) ’

i[6,°°(t, x), Jo%(t,y)]
=701, x)T?¢°(1, x) S(x—y) + 3, (¢, )T ¢(t, X) 8(x —y)

+ 7' (6, x)T? ¢(t,y) 3;8(x —y)

3o [m° (£, x)T% (2, x)] 8(x—y)

i

+ 9, [mi(, x)T2¢(t, x)] 8(x—y)
+ 7' (¢, x)T% ¢(t, %) 9;,6(x—y)
= a"J”“(x) d(x—y) + Ji(x) '8(x-y) .
In the last formula we have used the definition for the current,.

a __ a
Ju —ﬂ“T¢.



FIELD THEORETIC INVESTIGATIONS IN CURRENT ALGEBRA 195

(b) The difference between BB°° and 0c°°- is
% aAXKOO — % aiXioo — ai[ﬂ-o 20i¢] ‘
Since Z° and ¢ commute, (they operate in different spaces) J, commutes

oy 1 100
with 2an )

Exercise 2.5.
@@ 06f = ate¥ - ¥
= ¢to” — g%
3,0MY = 3,0R " + 943,0" — 'L
= gx?9” + ¢h 0, ¢° — pROYg, — 2gx"0 — gx? ¥
= — 2¢x"¢ .

We have used the equation of motion: a“ ot = gx?.

Bx 3y i[6,2°(s, x), 6.4t v) ]

(b) i[P°(z), Pi(t)]

= Va3x &3y i[5+ ¢°(r, x) 8°(1, x) — 5 ¢/(2, %)

X (1,x) = gx? $(1,x), $°(t,y) ¢°(£,¥)]

' d
jdsx a3y i¢°(t, x)¢°(t,y) -a——S(X— y)
Vi

+ ¢/(t,x) 92, y) 5(x~-y)

ox/

+ gx?¢'(t, X)ﬁ(x—y)}

- jdsx{-¢°(:,x)a"¢°(r,x) + ¢/(r,%) 3;0'(t, %)

+ gx* ¢'(1, %)}
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= - {20 {6°0, 9% 1) - W6, 0950, x)

— 2gx? ¢(r,.x) ] - g-“dsx x (e, x) .
The first term is a surface integral; it may be dropped. We are left with
i[P°(t),Pi(t)] = — gjdsxxi¢(t,x) .
(c) Since Z*P is zero for spin zero fields,
Mc‘“"ﬁ(x) = xagcuﬂ - xﬁgcué
9, M P(x) = 0 + x%3,6 — 8> — xFp, g ke
= x%9,0.*% — xPa, 0.4 .
We have used the symmetry of 6,*”. From (a) we have
9, M P(x) = 2g(xPx* - x*xF) =0 .

Exercise 2.6.

[Jo2(t, y), J3(1, 2)] 3% 8(x—2) + [T%(¢, x), (¢, 2)] 0% 8(z-y)
= = fabe 5(x—y)J,§(t, z)ak 6(z—x) .
Multiplying by y; and integrating over y gives
a b
[Jo%(t, x),J; (£, 2)]
= = fape Xi I (2, z) 3% 8(z—x)
- jd3y ¥ LTo (1, y), 78(1, 2)] 3% 8(x—2)

= — Ji(t,2)8(z—x) — fabcz,-J,ﬁ(t,z)'ak 6(z—x)

abe

- [ @y, 8 0% 8x-)



