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2. Canonical and Space-Time Constraints in Current Algebra
2.1 Canonical Theory of Currents

An arbitrary field theory is described by a Lagrange density & which we
take to depend on a set of independent fields ¢ and on their derivatives
o*¢ = ¢*. The canonical formalism rests on the following equal time com-
mutators (ETC) [1].

i[7°(z, x), ¢(2,y)] = 8(x-y) ,

i[7°(t, x), 1°(¢,¥)] = i[6(1, %), d(t;y)] =0 . e

Here #° is the time component of the canonical 4-momentum.

8 &
= : (2.2)
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The Euler-Langrange etiuation of the theory is
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Consider now an infinitesmal transformation which changes ¢(x) to
d(x)+ 86¢(x). The explicit form for §¢(x) is assumed known; we have
in mind a definite, though unspecified transformation. It is interesting to
inquire what conditions on £ insure this transformation to be a symmetry
operation for the theory. This can be decided by examining what happens
to £ under the transformation,

| 5.7 | X% 8% o
8L = —§¢ + —— S¢F = —— §¢ + 40489 . (2.4)
8¢ st 59 |
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If without the use of equations of motion we can show that § & is a total
divergence of some object A¥,

1% .
8 = vy 8¢ + m,M8¢ = 3,A* (2.5)

then the action, / = I d4x££§ is not affected by the transformation, and the
transformation is a symmetry operation of the theory. The conserved current
can now be constructed in the following fashion. With the help of the equa-
tions of motion (2.3), an alternate formula for 6.%can be given which is
always true, regardless whether or not we are dealing with a symmetry
operation. We have from (2.3) and (2.4),

8L = 3,769 + m9,8¢ = 9,(7"8¢) . (2.63)
Equating this with (2.5) yields
0= bp[w“ﬁda - A*] . (2.6b)
Hence the conserved current is
J, = m,09 -A, 2.7

Two situations are now distinguished. If A¥ =0, we say that we are
dealing with an internal symmetry; otherwise we speak of a space-time
symmetry [2]. Examples of the former are the SU(3) x SU(3) currents of
Gell-Mann.

8%p =T% . _ (2.8)

T? is a representation matrix of the group; it is assumed that the fields
transform under a definite representation. The internal group index a labels
the different matrices. The internal symmetry current is

Jo=nT% . (2.9)
Space-time symmetries are exemplified by translations.
8%*¢ = 3%¢ ,

e¥ =% | (2.10a)
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A =gt . | (2.10b)

Now the transformations are labeled by the space-time index «. The con-
served quantity is the canonical energy-momentum tensor 6% .

o1 = who* —ghor g . (2.11)

In the subsequent we shall reserve the symbol J and the term ‘“‘current”
for internal symmetries.

It is clear that when the internal transformation (2.8) is not a symmetry
operation, i.e. 8¢+ 0, it is still possible to define the current (2.9), which
is not conserved. By virtue of the canonical formalism, the charge density
satisfies a model-independent ETC, regardless whether or not the current
is conserved [3].

(1o (8,%), o2 (1,9)]
= [yt x) T80t 1), 1a(t,) TH4, ¥)1
= im(6,x) [T%, T?] ¢(z,x)8(x - y)
~fabe oS (1, X)8(x - y) . (2.12)

We have used the group property of the representation matrices

[T°,T°] = ify, TC . (2.13)
Similarly the charge,
0°(1) = [ x5, ) (2.14)

which for conserved currents is a time independent Lorentz scalar, generates
the proper transformation on the fields, even in the non-conserved case.

i[Q%(1), o(2,x)]
=i [y no ) TPy, 0 0)]

= T%(x) = 8%¢(x) . | (2.15)
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It should be remarked here that although conserved and non-conserved
internal symmetry currents and charges satisfy the ETC (2.12) and (2.15),
the space-time currents do not, in general, satisfy commutation relations
which are insensitive to conservation, or lack thereof of the appropriate
quantity ; see Exercise 2.5.

The importance of relations (2.12) and (2.15) is that they have been
derived without reference to the specific form of £; i.e., without any
commitment of dynamics. Thus it appears that they are always valid, and
that any consequence that can be derived from (2.12) and (2.15) will
necessarily be true. But it must be remembered that the Eqs. (2.12) and
(2.15) have been obtained in a very formal way; all the difficulties of local
quantum theory have been ignored. Thus we have not worried about multi-
plying together two operators at the same space-time point, as in (2.9); nor
have we inquired whether or not the equal time limit of an unequal time
commutator really exists as in (2.1), (2.12) and (2.15). It will eventually
be seen that the failure of current algebra predictions can be traced to
precisely these problems. |

A word about non-conserved currents. It turns out that in applications
of the algebra of non-conserved currents, it is necessary to make assump-
tions about the divergence of the current. The assumption that is most
frequently made is that 8“‘.]‘u is a “gentle” operator, though the precise
definition of “gentle” depends on the context. We shall spell out in detail
what we mean by ‘“‘gentle’’; however for the moment the following concept
of ‘“gentleness” will delimit the non-conserved currents which we shall
consider. The dimension of a current, in mass units, is 3. This follows from
the fact that the charge, which is dimensionless, is a space integral of a
current component. Therefore a“-J# has dimension 4. However if the
dynamics of the theory is such that all operators which occur in 8‘“.]1u carry
dimension less than 4, then we say that B“J“ is “‘partially conserved”’.

As an explicit example, consider the axial current constructed from
fermion fields, Js‘“ =iyy*¥5y; and assume that the fermions satisfy the
equation of motion

ity =-my +ev4, + 507V .

Here A* and ¢ are vector and pseudo-scalar boson fields respectively. Recall
that the dimension of a fermion field is —2" while that of a boson field is 1.
(This is seen from the Lagrangian, which necessarily has dimension 4, so
that the action, I = Id“xﬁf, is dimensionless. The fermion Lagrangian con-
tains iyy* 0,V the derivative carries one unit of dimension, this leaves
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3 for Yy, hence Yy has dimension % The boson Lagrangian contains
a*¢d,¢; the two derivatives use up 2 units of dimension; hence ¢ has
dimension 1.) Evidently Js“ possesses in this model the divergence astﬂ =
2my~y Y +2gV¥y¢. The operator Yy° ¢ has dimension 3, while y y¢
has dimension 4. Hence we say that J.* is partially conserved only in the
absence of the pseudo-scalar coupling.

Although model independent commutators for current components have
been derived from canonical transformation theory, the use of these results
for physical predictions requires a tacit dynamical assumption which we must
expose here. The point is that in the context of transformation theory it is
always possible to add to the canonical current a divergence of an anti-
symmetric tensor.

JH > JE + 3, XM
XM = - xHN (2.16)

Such additions, called “super-potentials™’, do not change the charges nor the
divergence properties of the current. (Conservation of 9, X AH is assured by
the anti-symmetry of the super-potentials. The fact that the super-potential
does not contribute to the charges is seen as follows: 5d3x 0, X A0 -
Idax 0; X 1 = 0.) It may be that the modified current possesses a physical
significance, greater than that of the canonical expression. Indeed this state
of affairs occurs with the energy momentum tensor. For reasons which I
shall discuss presently, the canonical expression (2.11), is usually replaced
in physical discussions by the symmetric, Belinfante form; see Exercise 2.3.

1
ogh® = 6. + E—BAXA““ , (2.17a)

XMHe = — xHAe — pAyHag _ phylag _ gasiug (2.17b)

Here Z%? is the spin matrix appropriate to the field ¢.

The modified expressions for currents will in general possess commu-
tators which differ from the canonical ones given above (2.12). Thus our
insistence on the canonical commutators, rather than some others, requires
an assumption that the canonical currents have a unique physical significance.
This significance can be derived from the seemingly well established fact that
the electromagnetic and weak interactions are governed by the canonical
electromagnetic and SU(3) x SU(3) currents respectively. The physical
significance of the Belinfante tensor follows from the belief that gravitational
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interactions are described by Einstein’s general relativity. In that theory
gravitons couple to 83", and not to 6.*”. (In our discussion of scale trans-
formations, Section 7, we shall argue that a new improved energy -momentum
tensor should be introduced; and correspondingly gravity theory should be
modified.) It is possible to develop a general formalism based directly on the
dynamical role of currents. In this context one can derive current commu-
tators without reference to canonical transformation theory. The results
are of course the same, and we shall not discuss this approach here [4].

We conclude this section by recording another commutator which can be
established by canonical reasoning; see Exercise 2.4.

i[68°°(2, %), J,°(t,y)] = *J%(x)8(x —y) + JA(x) 3" 8(x ~y) .
| (2.18)

This has the important consequence that the divergence of a current can be
expressed as a commutator. -

116°°(2, %), Q%(t)] = I, %(x) 2.19)

Formulas (2.18) and (2.19) are insensitive to the choice of 6°°; both the
canonical and the Belinfante tensor lead to the same result. Other ETC
between selected componets of 8 *® and J““ can also be derived, in a model
independent fashion. We do not pursue this topic here; one can read about
it in the literature [5].

2.2 Space-Time Constraints on Commutators

Although interesting physical results can be obtained from the charge-
density algebra, (2.12), the applications that we shall study require commu-
tation relations between other components of the currents. These cannot
be derived canonically in a model independent form. For example, J.°
involves m;, see (2.9); but the dependence of m; on the canonical variables
7° and ¢ is not known in general, and one cannot compute commutators
involving m; in an abstract fashion.

It is possible to determine the [Ja°, ka] ETC by investigating the space-
time constraints which follow from the fact (2.12) is supposed to hold in
all Lorentz frames. As an example, consider the once integrated version of
(2.12) for the case of conserved currents.

[Q%, J,5(0)] = —fpe ,5(0) . (2.20)
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An infinitesimal Lorentz transformation can be effected on (2. 20) by com-
muting both sides with M?! , the generator of these transformations.

(M, [Q%, J,2(0)] ]

[ MY, 0%1,7,20)] + [Q% (M, 1,211 ,

= ~fpe (ML, 1,60 . . (2.21a)

The second equality in (2.21a) follows from the first by use of the Jacobi
identity. All the commutators with M of may be evaluated, since the commu-
tator of M*# with J,? is known from the fact that the current transforms as
a vector.

i (M, J,%(x)]
= (x93 —xF3*)J 1 (x) + (g5 g% - 8*"80) I, (x) . (2.21b)
It now follows that (remember the current is assumed conserved)

[Q%, 72 0)] = = fpe JF (0) . (2.22a)

The local version of (2.22a) is

[ 1,22, x), J2 (2, y)]

JF(x)8(x-y) + SP(y)dla(x-y) +... . (2.22b)

~ Jabe

In (2.22b) we have inserted a gradient of a § function; the dots indicate the
possible higher derivatives of 8 functions which may be present. Of course,
all these gradients must disappear upon integration over X, so that (2.22a)
is regained. Such gradient terms in the ETC are called Schwinger terms
(ST) [6].

Further constraints can be obtained by commuting the local commu-
tator (2.12) with P° and M°'. However, the strongest results are arrived
at by commuting (2.12) with 8°°, rather than with once integrated moments
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of 6°° which is what P° and MO are. (P° = jdsx 8°°(0, x); M° =
- Idax x'6°°(0, x).) Thus we are led to consider '

1[6°°(0, 2), [4,°(0, ), 4,20, )11
= fpe 8(x—y)i[6°0,2), /50, 0)] . (2.23a)

The _léft-hand side is rewritten in terms of the Jacobi identity; then (2.18)
is used to evaluate the [8°°,J,°] ETC. The result, for conserved currents,
is '

[J,200,y),72(0,2)] 3% 8(x—z) + [J,%(0, x),J2(0,2)] ¥ 6(z~ y)
= —fpe 8(x—¥) L0, 2) ¥ 8(z—) . - (2.23b)

The most general form for the [J,?, J}’] ETC consistent with the con-
straint (2.23b) is (see Exercise 2.6) |

[4,°0,%), 720, y)]

= ~fpe 0, x)8(x-y) + S50, y) ¥ 8(x-y) , (2.24a)

SFP0.y) = S50 y) -  (24p)

Thus we have determined the [ J/,%, J,-b 1 ETC up to one derivative of the
8 function; all higher derivatives should vanish. The surviving ST possess the
symmetry (2.24b). It will be shown later that the ST cannot vanish. The
same conclusions can be obtained when the current is partially conserved,
as long as the divergence of the current is sufficiently gentle so that no ST
is produced when it is commuted with J.°.

The above methods can be used to obtain additional constraints on various
current commutators. One exploits the Jacobi identity, and the model
independent commutators between selected components of #%° and J¥.
We do not present these results here, since they are only of limited interest.
However one result is sufficiently elegant to deserve explicit mention. If
S{’jb =8,-]éS"b, where S, is a Lorentz scalar, then the [J?, J]-b] ETC does
not have any derivatives of & functions [7].
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2.3 Space- Time Constraints on Gre_en s Functions

We must also discuss the space-time structure of Green’s functions and
Ward identities. The reason for emphasizing this -topic here is that the
theorems of current algebra concern themselves with Green’s functions:
scattering amplitudes, decay amplitudes and the like; while the most
felicitous way of obtaining these results is by the use of Ward identities.

Consider the T product of two operators A and B.

T(x) = TA(x)B(0) ,
C=0(x0)A(x)B©) + 8(-x,)B(0)A(x) . (2.25)

Matrix elements of T(x) are related to Green’s functions. However, a Green’s
function must be Lorentz covariant, while T(x) need not have this property
because of the time ordering. It is necessary, in the general case, to add to
T(x) another non-covariant term, called a seagull, 7(x), so that the sum is
covariant. The sum of a time ordered product with the covariantizing seagull
iscalled a T* product.

T*(x) = T(x) + 7(x) . (2.26)

It is required that T*(x) and T(x) coincide for xo % 0; hence 7(x) has
support only at xo =0;i.e., 7(x) will involve § functions of x, and deriva-
tives thereof. '

We now investigate under what conditions T (x) is not covariant, We also
show how to construct the covariantizing seagull. Finally we examine under
what conditions Feynman’s conjecture concerning the cancellation of
Schwinger terms against divergences of seagulls is valid. (Feynman’s conjec-
ture will be explained, when we come to it.) To effect this analysis it is
necessary to assume that the [4, B] ETC is known.

[4(0, x), B(0)] = C(0)8(x) + S'(0)d;8(x) . (2.27)

In offering (2.27) we have assumed, for simplicity, one ST; higher deriva-
tives can easily be accommodated by the present technique.

Our analysis [8] makes use of the device of writing non-covariant
expressions in a manifestly covariant, but frame dependent notation. A unit



