108 R.JACKIW

behavior of amplitudes is not, in general, correctly given by this technique
has recently been described as ** the breakdown of the BJL theorem™.

Note that the BJL theorem defines the commutator from the T product,
rather than from the covariant T* product. However, in perturbation theory
one calculates only the covariant object. Hence the T product must be
separated. This is achieved by remembering that the difference btween T and
T* is local in position space, hence it is a polynomial of g, in momentum
space. Therefore, before applying the BJL technique to the expressions
calculated in perturbation theory, all polynomials in g, must be dropped.

It is clear that the expansion in inverse powers of g, can be extended
beyond the first. From (3.3a), it is - easy to see that if the [4,B] ETC
vanishes, then we have

lim QST(Q)=—'Idaxe‘iq”‘(al[/i(O,X),B(O)]Iﬁ>. (3.12)
o > >

Again, if this limit is divergent, then this matrix element of the [/i, B] ETC
is infinite. Eventually commutators with sufficient number of time deriva-
tives probably are infinite, since it is unlikely that the expansion in inverse
powers of g, can be extended without limit.
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4. The 7° -2y Problem

4.1 Preliminaries

The neutral pion is observed to decay into 2 photons with a width of the
order of 10 eV. This experiment measures the matrix element M(p,q) =
{(m,k|v,p;v',q), p and g are the 4-momenta of the photons, Kk =p +g¢
is the 4-momentum of the pion. M( p, q) has the form

e, (p)e,(q) T"(p,q) ,
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i.e‘., T**(p, q) is the previous matrix element with the photon polarization
vectors e“(p)e;(q) removed. The tensor T#” has the following structure.

: -T“v(p’ q) = E“UQB paqﬁT(kz) . . (4].)

This i$ dictated by Lorentz covariance and parity conservation (the pion is
a pseudoscalar, T#” must be a pseudo-tensor, hence the factor e**#)
Gauge invariance (p, T*"(p,q)=0=q,T""(p,q)) and Bose symmetry
(T**(p, q) = T"*(q, p)) are seen to hold.

We shall keep g> and p?, the photon variables, on their mass shell g* =
p? = 0. The pion variable &2 is, of course, equal to the pion mass squared u?,
but for our arguments we allow it to vary away from this point. This conti-
nuation off the mass shell may be effected by the usual LSZ method.

TH(p, q) = €% p, gy T(K")

 = (1 —k2)(0160) 17, P37, ) . (4.2)

Here ¢ is an interpolating field for the pion. We, of course, do not assert that
it is the pion field — such an object may not exist. It merely is some local
operator which has a non-vanishing matrix element between the vacuum and
the single pion state, normalized to unity {0 [¢(0) |7 )= 1.

4.2 Sutherlahd— Veltman Theorem

Following Sutherland and Veltman [1], we now prove that if the diver-
gence of the axial current is used as the pion interpolating field, then
T(0) =0, as long as the conventional current algebraic ideas are valid. This is
a mathematical fact, without direct experimental content. However, since
u? is small, compared to all other mass parameters relevant to this problem,
one may expect that T(u?) ~ T(0). This smoothness hypothesis is based
on the supposition that the divergence of the axial current is a “gentle”
operator whose matrix elements do not have any dynamically unnecessary
rapid variation. This is the content of PCAC, which is very successful notion
in other contexts. Unfortunately, in the present application, one cannot
understand the experimental fact that T (u?) # 0.

After Sutherland and Veltman pointed out this experimental failure of
PCAC, the most widely accepted explanation was that T(k*) was rapidly
varying, for unknown reasons. This is not impossible, since it has happened
before in current algebra-PCAC applications that a source of rapid variation
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for a particular amplitude was at first overlooked. However, in the present
instance, as the years passed by, no reason was forthcoming to explain the

putative rapid variation.
The Sutherland-Veltman argument begins by representing the off mass

shell pion amplitude (4.2) by
T#(p,q) = €*(u* —k?) fd“x d'y 7P ¥ 7Y
X (OIT*J*(x)J%(»)$(0)|0) . (4.3)

Here J* is the electromagnetic current. The pion field is replaced by the
divergence of the neutral axial current J, ¢,

9, J5%0)
¢(0) = — S - (4.4)
Fu

Fu? is the appropriate factor which assures the proper normalization for
the pion field, defined by (4.4).

(01Js%0)|n) = ip*F
(013, Js*(0) Im) = p*F . (4.5)
Thus

e -k
™(p,q) = (‘:, )Id xd'y P X ety
u?

x (O|T*JH(x)J”(y)d,J,2(0)[0),

¢2 2
w? -k . .

= ( )Idxdye‘ X ety
Fu®

x 3, {OIT*J*(x)J*(¥)Js%(0)|0) ,

(u* -k%) |
= T kT (4.62)
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where T**”(p, q) is defined by
T**¥(p,q) = —ié Id’*x d*y e P+ X g~iq -y

X {OIT*J#(x)J"(y)Js*(0)[0) . (4.6b)

The justification for passing from the first to the second term on the right-
hand side of (4.6a) is the current algebra satisfied by J? and J* : apart from
possible ST the currents commute.

[75(0,x), J#(©0)] = 0+ ST . (4.7

The ST is handled by one of three ways. One may simply assume that it is
absent; since the ETC does not involve two identical currents, there is no
proof that a ST must be present. Alternatively a weaker assumption is that
the ST is a ¢ number. It is easy to see that since the vacuum expectation
value of a current vanishes, a c-number ST would not interfere with passing
the derivative through the T* product. Finally the weakest assumption that
one can make is Feynman’s conjecture — without discussing the nature of
any possible ST, it is asserted that the naive procedure is the correct one, due
to cancellation of ST with divergences of seagulls.

The tensor T*#¥(p, q¢) must possess odd parity, because Js is a pseudo-
vector; it must satisfy the Bose symmetry: T***(p, q) = T*"*(q, p); finally
it must be transverse to p, and q,: p, T**"(p,q) =0, q, T***(p,q) = 0.
The last condition follows from the conservation of J* and the current
algebra satisfied by J° with J* and J5®, Again all these commutators vanish
apart from possible ST the latter being ignored in this calculation.

[/°(0, x), J#¥(0)] = 0+ ST, (4.8a)
[7°(0,x),J.*(0)] = 0+ ST . (4.8b)

The following form for T**¥(p, q) is the most general structure, free from
kinematical singularities, satisfying the above requirements (remember that

p* =q* =0).
T**(p,q) = e**“?p,,q, k*F, (k*)
+ (eauwcbqv _ Eavw(ppn)pw q¢F2(k2)
+ (eH@PpY — WPWOGHYp gy Fy(k?)

+ eI (p—q )k Fy (k)2 . (4.9)
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It now follows that

K T™(p,q) = €9 p g, K [F,(¥) - F,())] . (4.10a)
Comparison with (4.6a) and (4.1) finally gives

(u® - k%)
Fu?

T(K) = K [F,(k*) - F, (k)] . (4.10b)

As we mentioned, the F; are free from kinematical singularities; since we are
working to lowest order in electromagnetism, they do not possess dynamical
singularities at k* = 0. Hence we find, as promised, T(0) = 0. Note that
PCAC is not used to obtain the mathematical statement T(0) = 0. This
hypothesis becomes necessary only when T(0) is related to T(u?). It will
now be shown that even the mathematical prediction is invalid in the o model.

4.3 Model Calculation

We calculate [2] the off mass shell pion decay constant, T(k?), in the o
model where all the assumptions of the Sutherland- Veltman theorem seem to
be satisfied [3]. The Lagrangian is

L=P@irvro,-my + 58,030 -~ 7 u’¢’ + 5 3,00%0
— 5’ +20F%)0® + e Pt yA, + gU(o+ ¢ 75)V
= A[(¢* + 0*)* — 2F0(0® + ¢*)] . (4.11)

Here {, ¢ and o are fields for the “proton”, “pion” and o particle, each
possessing the respective masses m, u and (u2 + 2AF 2)1/2. The proton
interacts with the pion and ¢ in a chirally symmetric fashion with strength
g. The proton also has an electromagnetic interaction; since we work to
lowest order in that interaction, it is sufficient to consider the electromagnetic
potential A* as an external perturbation. There are also meson self-couplings
with strength A, which are necessary for the consistency of the model, but
which do not affect the present discussion. The parameter F is equal to
2mg~'. All isospin effects are ignored, since they are irrelevant to the
argument.
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The mcdel possesses a neutral axial current J* whose divergence according
to the equations of motion of the theory is the pion field.

Js® =iyv*y ¢y + 2(0d% —93%) - Fo%¢, (4.12a)
3,Js% = u*Fo . | (4.12b)

The electromagnetic current J* = yy*{ and the axial current satisfy con-
ventional current commutators. Of course, no ST is present canonically, in
the time-component algebra so we cannot ascertain whether or not Feynman’s
conjecture is satisfied.

In this theory the pion can decay into two photons by dissociating first
into a virtual proton-antiproton pair, which then emits two photons. The
lowest order graphs are those of Fig. 4-1. These have the integral represen-
tation

T™(p,q) = T'*"(p,q) + T'**(q,p) ,

‘ a*r
'*(p,q) =i ez[ Tr v° re + *_ ;]!
~(10 q) = ig 27 T [ Yo TP ]
-1 ; -1
x Y[y r*=-m]" Y[y r*—7,4%-m] " .
(4.13a)

The integral appears to diverge linearly; however, after the trace is performed
one is left with a finite expression.

d*r
(2m)?

I'*(p,q) = 4mige® et*” paqﬁj

« [(r+p)2 _mz]-1 [rz-mz]'l [(r—q)z _m2]-1 ‘
(4.13b)

The remaining evaluation is elementary [4]. The answer is

mge®

4n?

1 1-x
Ir'“*(p,q) = ehvop paqﬁj dx f dy [m* - K xy] ™ .
0 0

(4.13¢)
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Fig. 4-1. Feynman graphs describing the a° =2+ amplitude, in lowest order for, the

theory given by Eq. (4.11).

In the notation (4.1) we find

m e2 1 1-x

T(k?) = gz j dx I dy [m? - k*xy] ™",
27 0 0
ge? e’

T(0) = = £0 .

41°m 2mF

(4.14)

For future reference, note that the large m behavior of T(k%)is ge® /4n*m.
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Our calculation has demonstrated that the mathematical portion of the
Sutherland- Veltman theorem is false. Smce T(k?) is perfectly smooth
for small £, T(k*) = T(0) [1 + k*/(12m*)], we see that the experimental
part of that theorem is also incorrect in this model. The reason does not lie
in any unexpected rapid variation, but rather in the failure of conventional
current algebra.

4.4 Anomalous Ward Identity

To gain further understanding into the problem, we calculate the function
T***(p, q), (4.6b). The relevant Feynman graphs are given in Fig. 4-2. In
the first two graphs, Fig. 4-2a, the axial current attaches directly to the
Fermion loop. In the last two, Fig. 4-2b, it passes first through the virtual
pion with the coupling 2mg~ ', thus acquiring the necessary pion pole. The
integral representation is

T**(p,q) = T,**"(p,q) + T,***(p,q) , (4.15a)

T,**(p,q) = T**¥(p,q) + I'***(q,p) , (4.15b)

r**¥(p,q) = z’ezf Tr y3 y* ['yﬁrﬁ + 'yﬁpﬁ— m] !

r
(2m)*

x v*[yrf—m] ™y [yrf - paf -m]”

(4.15¢)
auy 2mg_1 a Y
T,*(p,q) = - P——?_k ™ (p,q) . (4.15d)
Evidently the verification of the axial Ward identity
(Fu?)™ (W &)k, T***(p,q) = T*(p,q) , (4.16a)

which was used in the derivation of the Sutherland- Veltman theorem, is
equivalent to showing

k,T,***(p,q) = 2mg ' T*¥(p, q) . | (4.16b)
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(a)

~y

(b)

Fig. 4-2. Feynman graphs describing the Jsa—>2'y amplitude, in lowest order for the
theory given by Eq. (4.11).
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The vector Ward identity, i.e., gauge invariance, is also necessary for the
theorem. In the present notation it is equivalent to

oc,uv

p,T,**"(p.q) = q,T,***(p,q) = | 4.17)

We now demonstrate that both (4.16) and (4.17) cannot be maintained
simultaneously for T, *¥¥ as given by (4.15).

The important property of the graphs in Fig. 4-2a which is responsible
for this anomalous behavior is their linear divergence. Unlike in the evalua-
tion of TH¥, (4.13), performing the trace does not remove this divergence.
In a linearly divergent integral it is illegitimate to shift the variable of integra-
tion. This is easily seen on one dimension. Consider

A(a) = ro dx [f(x+a) — f(x)] . (4.18a)

If one can shift the integration variable in the first integral x +a — x ; one can
conclude that A(a)=0. To see that A(a) need not vanish, let us expand
the integrand.

o 2 )
A(a) = ‘“ dx [af'(x) +—a£—-f"(x) +...]. (4.18b)

Integrating by parts, we find

2
A(a) = a[ f() - f(-o)] + —%—[f'(w) —f(=o)] +
(4.18¢)

When the integralj‘: dx f(x) converges (or at most diverges logarithmically)

we have 0= f(+o) = f'(+e)..., and A(a) vanishes. However, for a
linearly divergent integral 0 # f(x o), 0= f'()... and A(a) need not
vanish.

Aa) = a[f() = f(==)] . (4.18d)

Such a contribution is called a “surface term”. This state of affairs persists
in 4-dimensional, Minkowski space integrals. Consider

4 ' o
d*r { rk + g# r#

@2nf | (r+d)?-m®)?  (* -m®)

A*(a) = f[ (4.19a)
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Here 4 is an arbitrary 4-vector. The surface term may be evaluated. The
result is non-vanishing; see Exercise 4.1.
a

3272

The consequence of this for our problem is that the integral I'*#” (4.15c¢),
which contributes to T, **", is not uniquely defined. The point is that in
exhibiting (4.15¢) we have routed the integration momentum r in a particular
fashion: the fermion leg between the two photons carries r. However any
other routing could also be chosen, so that the fermion leg between the
photons carries the 4-momentum r+a, where 4 is-an arbitrary four vector.
If the integral were not linearly divergent, then a shift of integration would
return this routing to the previous one; but in the present instance such shifts
produce surface terms.

In conventional evaluations of divergent Feynman graphs, such ambi-
guities are usually ignored. Typically cut-offs are introduced, which eliminate
these problems and then the cut-offs are removed by the renormalization
procedure. For our purposes we need to keep track of all the possible sources
of ambiguity. Thus we replace the expression for I'**”| (4.15c), by a class of
expressions, parametrized by an arbitrary 4-vector a”.

A¥(e) = - (4.19b)

r**(p,qla) = T***(p,q) + A**(p,qla) , (4.20a)

A" (p,q la)

d*r

2 5 Lo B g B -1

=je Try’> ¥* [y,r° + Y.a° + v, PP — m]
5(21!')4 ﬁ 5 ﬂ

X [P+ 9af —m] ™ Y [prf + ydf - P -m]”
= [+ PP —m] ™ ¥ [yrf-m]™
x Y[y’ - xef-ml™" . (4.20b)

The surface term is evaluated, see Exercise 4.2.

2
e
A**¥(p,qla) = — Py e““”ﬁaﬁ : (4.21)

The arbitrariness of a, is limited somewhat by the plausibility requirement
that no vectors, other than those already present in the problem at hand,
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should be introduced. Hence we set a;=(a+ b)p + bqg. Correspond-
ing to the class of functions I'**”(p, qla) we have a class of functions
T,***(p, qla). Accordingly (4.15b) and (4.21)

2
e
T,**(p.qla) = T,**(p,q) = T ae*P(py ~qp) . (422)

Note that Bose symmetry has been maintained.

Any member of the class of functions T, ***(p, q |2) may be considered
“correct™. The various functions differ among themselves only by a poly-
nomial in p and g, i.e., by a covariant seagull. We now attempt to determine
a by imposing the axial and the vector Ward identities. We are hoping that
T,**"(p,q |a), for some definite value of a, will satisfy these identities.
It will be seen that no such value for a exists.

It is possible to evaluate T,**”(p,q) as given by (4.15), and therefore to
exhibit an explicit formula for T, ***(p,q |a). The evaluation is effected by
conventional methods, except it must be always remembered that shifts of
integration variables produce non-vanishing, but well defined terms. A
remarkable thing that occurs is that the end result is finite ; symmetric integra-
tion removes the linear divergences as well as the sub-dominant logarithmic
divergence. Thus a finite, unambiguous formula for T T,**"(p,q |a) may
be arrived at. (The illegitimacy of shifts of integration follows from the
superficial divergence properties of integral, even if accidentally the result is
finite.) The detailed evaluation of T, *¥*(p,q) has been given in the
literature [5]; for our present purposes of verifying the Ward identities we
do not need this formula, the integral representation (4.15) will suffice.

Consider first the axial Ward identity. We wish to learn the form of
k,T,**(p,q). From (4.15c) it follows that

k,L'**(p,q)

= (P, *q,) M

d'r -1
= je? Tr v (v 0% + 7, 4%) [1,7° + v, p* — m]
21y sP"* Bd7) L7 8

X 7“[73r‘3—m]-1 7"[731"3'— o7 ¢ -m]~t . (4.23a)
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After rewriting 7ﬁp6+7ﬁqﬁ as 2m+(75pﬁ+73’3—m)—(73’3—7543‘””)
we have

k, T***(p,q)
d*r

(2m)’

= (2mg“)igezj. e [pr? + yp? -m]™

x Y [1rf-m] 7y [pr? - pqf —-m] 7

4

d'r _ ‘ -
+ iez,‘(zﬂ‘* Tr'ys'y’“[jrﬁrﬁ—m] 17”[73r6-7pqﬁ—m] '

a‘r _
- iezj(zw)4 Try® [P - 197 + m] [P + %rf—m] ™

X Y [yprf = m1™ oy [pprf - 9qP -m] (4.23b)

The first integral is recognized as 2mg~" times I'*”(p, q);see (4.13). In the
third integral v, rf - yﬁqﬁ + m may be taken through the v°, thus changing
the overall sign and the sign of m. Then the cyclicity of the trace allows
one to transpose that term to the end of that expression, thus cancelling the
last propagator. We are now left with

k,T***(p,q) = 2mg™' T""(p,q)
4"
+ ie’_“(%r Ty yH [yt —m] T Y [yrf -y qf -m] ™

r _ i
+ t’ezj(zﬂ)4 Try® [0 + P —m]1 7 y¥ [yrf —m] 7' ",

(4.23¢)

Each of the two integrals must vanish since it is impossible to form a two-
index pseudotensor which depends on only one vector. We find therefore

k,T,%%(p.q) = 2mg™ T*(p,q) ,
2

, ae :
k,T,***(p,qla) = 2mg™~' T*(p,q) + = etebp gy . (424
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The conclusion is that in order to satisfy the axial Ward identity the routing
of the integration variable must be as in Fig. 4-2; i.e., 2 must be set to zero.
Note that this verification required no shifts of integration variable. The
vector Ward identity, i.e., gauge invariance cannot be established in the same
fashion, as we now demonstrate.

We wish to learn the form of p, T, **”(p, q). According to (4.15)

p,T,***(p,q) = p,0***(p,q) + p,T***(q,pP)

¢ dr _
= iezj 27y Tr y° y© [7ﬁrﬁ + 7ﬁp6—m] !

x PP [yrP—m] " Y [yrf - v54F -m]™

d*r _
+ ic-:zj(zﬂ)4 Tr Y y*[yrf+ 4% -m] ™

x Y [wr® —m] g pPlyrf - vpf-m] ™
(4.25a)

Use of the identities
-1 -
[v57® + 1508 —m] " PP [prf —-m]™

= [73’3_”1]-1__ [73"B+ 'ng'a—m]-l ,

[yrf—m] " 0P [9r® - 0P -m]™

-1 —
= [prf-ypf-m] —[prf-m]7
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allows (4.25a) to be written as

p.T,***(p,q)

dr - -
= z‘e'*’J.(M)4 Try v [yr? -m] 7 y¥ [nrf - v4° -m] ™

—ie j( o7 Ty y®[yr? + 1308 —m] ¥ [P -9 qf -m] ™

o d%r _ -
hie (2m)* Try®y® [ygr? + 0% —m] ™ y*[ygr? =50 -]~
.2 f d*r 5. 8 B -1 v g -1
—ie 2y Try> vy [yr® + pa®-m] ™ v [yr" —m]

(4.25b)

The first and last integrals in (4.25b) vanish because they are two index
pseudotensors depending on one vector. The remaining two integrals could
be made to cancel against each other if shifts of integration were allowed.
Unfortunately such shifts lead to a finite contribution. The value of the
surface term evaluated is (see Exercise 4.3)

2

pu a“v(p q) 2 #Vﬁpu Qﬂ . (4'250)
4
Therefore
Quy e2 apvf a
P T, %" (p,qla) = 7€ Pu qg 1+ 5] : (4.26a)

Bose symmetry, which has been maintained all along, insures a similar Ward
identity in the v index.

e’ a
q,T,***(p,qla) = “ "B p, qpll + 51 (4.26b)

It is seen that the choice for 2 which insures the vector Ward identity,a = —2,
is different from the choice that insures the axial Ward identity, 2 = 0. The
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conclusion is that there is no way of evaluating T, **¥(p, 4) so that both
Ward identities are satisfied. This remarkable result is even more striking
when it is remembered that I'; ***(p,q) is not divergent in the explicit
evaluation.

One might inquire whether it is possible to add to T, **¥ a further seagull,
which then would restore both Ward identities. If such a seagull were to
exist, one would gladly insert it into the definition of T, **” even though it
did not arise ‘‘naturally” from the integration. It should be clear that no such
further additions are possible. Any seagull one adds must be a three-index
pseudotensor, and a polynomial in p and q. Bose symmetry limits it to be
proportional to e““”ﬁ(pﬁ -qg ). This is precisely the arbitrariness which we
have previously allowed for; see (4.22); and it is not sufficient to establish
both Ward identities.

Faced with the impossibility of maintaining both Ward identities, we must
decide which one we shall accept and which one we shall abandon, i.e., we
wish to choose a. It is recognized that the vector Ward identity is a conse-
quence of gauge invariance, while the axial Ward identity is a consequence
of an equation of motion, a“ JE=F u? ¢. Clearly the former is a much more
important principle, and & should be set equal to —2. If there were a physical
principle which assured the conservation of the axial current as well, we
would be faced with a much more problematical situation. Thus we should
be grateful that massless neutral pions do not, in fact, occur in nature. We
conclude, therefore, that the reason for the violation of the Sutherland-
Veltman theorem, T(0)=0, is the violation of the axial Ward identity.
Once a modified Ward identity is used, the Sutherland-Veltman theorem is
modified, and the new conclusion agrees with the explicit evaluation. With
the choice for @ which assures gauge invariance, the Ward identities are

P T**"(p,q) = q,T***(p,q) = 0, (4.27a)
and
F 2 2
auy — H uy _ uraf 427b
kaT (psq) - ug_.kz T (p,Q) 21T2 € po;qﬁ . ( . )

The Sutherland-Veltman derivation is now modified at the crucial step
(4.6a). Instead of that equation, we have

e p,gsT(K*) = T (. q)
2 2 2
ue -k _ e
= e Tt e Y% padp -

(428)
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The first term in the brackets is as before; therefore

2 2 2
ue -k e
T(k*) = ——5—{k* [F,(¥*) - F5(k*)] + el
o2
TO) = 4.29
© 2mF (4.29)

This agrees with the explicit calculations, (4.14).

The phenomenon of the violation of a Ward identity in perturbation
theory should be familiar from quantum electrodynamics. For example,
the vacuum -polarization tensor and the photon-photon scattering amplitude,
as calculated perturbatively in spinor electrodynamics, are not transverse
to the photon momenta as they should be. The conventional way of restoring
gauge invariance is by the Pauli-Villars regulator technique. It is instructive
to demonstrate the workings of that technique in the present context,

Recall that according to the Pauli-Villars regulator method, an amplitude
involving a loop integration is considered to be a function of the mass of the
particles circulating in the loop. A “regulated” amplitude is defined as the
difference between the given amplitude and the same amplitude with the
mass evaluated at a ‘‘regulator’” mass. Finally the physical amplitude is
regained by letting the regulator mass pass to infinity. Thus for the pion
decay amplitude we have

T (p,q) = T*(p,qIm) - T*(p,q M) , (4.30a)
Tohysica(P>4) = lim Tg, (p,q) . (4.30b)

According to (4.14), T”(p,q|M) vanishes as e"”*’p_q,(ge*/4n°M)
for large M, hence

Thy e (P-4) = T*(p,q|m). (4.30¢)

This is as it should be, since T¥’(p, q) was evaluated unambiguously from a
finite integral. For the axial current amplitude on the other hand, we have

TS (P.qla) = T,**"(p,qlalm) — T,**"(p,qla|M), (431a)

auy

Tl,Physical(p’q) = Mhln Tolt“;eg(p’qla) . (4.31b)
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Consider now the vector Ward identity. According to (4.26a)

2

e a
Py Reg(Poa12) = = e**Pp qs [l + Py
2
— auvp E —
S Pudgll+ 71 =0, (4329
pﬂT(:f‘lfhysical(p’q) =0. | (4'32b)

For the axial Ward identity, we have according to (4.24) and (4.30c)

2

ko T Reg(Py @la) = 2mg™" T*(p,q|m) + ::2 "’ p, qq
. 062
—2Mg ' T*(p,q M) ~ o ehvap P 45
= 2mg~' Tqy . (P.q@) — 2Mg™' T*(p,q M),
(4.33a)
kaTolt{‘l;’hysical(p ’q)
= 2mg™ Thp e (P,@) — lim 2Mg™ T*(p,q M) . (4.33b)

2
Since lim 2Mg !'T**(p,qIM) =

ghves P,dg, We are left with

M— o 21['2
m
kaTo{,lfhysical (p ’ Q)
2
= 2mg-! T‘;;ysiqal(P,CI) ey "’ p. g . (4.33¢)

It is seen that the Pauli-Villars technique automatically evaluates the gauge
invariant expression for the amplitude. It selects 2 =—2, which, as we have
seen, leads to a violation of the axial Ward identity.

In conclusion we remark that the troubles we found with the matrix
element of the axial current are not restricted to the ¢ model. It is clear
that it is-the triangle graph which leads to difficulties. Such a graph occurs in
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quantum electrodynamics, in a quark model, indeed in any model which
possesses an axial current which is bilinear in fermion fields. This observa-
tion will permit us to generalize the present results beyond the specific
o model [6]. -

4.5 Anomalous Commutators

We have seen that the evaluation of the vector, vector, axial vector triangle
graph, Fig. 4-2a, results in a formula for T, **¥(p, q) which does not satisfy
the Ward identities one would naively expect. Our next task is to understand
the breakdown of the Ward identities in terms of the anomalous commutators,
which must be responsible for this state of affairs [7] .

According to the BJL theorem, the ETC between the various currents may
be evaluated from the high energy behavior of the triangle graph. Evidently
we now must go off the photon mass shell p? =g% =0, so that the time
component of the 4-momentum can be sent to infinity independently, as is
required by the BJL technique. It turns out, for our purposes, to be sufficient
to go off mass shell for one photon only. Thus we are led to consider

T, %(p,q) = ~ie[d°x e X COITIH(x) T, %0) 1 70)

i “t¥(p.q)e,(q) , (4.342)
iaw(P,Q) = “iej.d4x d4y e-P X o-iq .y

x {OITJ*(x)J(»)J,%0)10)
*=9
Z’#:o
(4.34b)

Here the bar over T, ** and il @k¥ serves to remind us that one photon is on
the mass shell. The bar over J; * indicates that we are not considering the full
axial current of the o model, (4.12a), but only the part bilinear in the nucleon
fields; thus the lowest order matrix element involves only the problematical
triangle graph, Fig. 4-2a. Note also that we are interested in the T product,
not the covariant T* product. It is the former object that determines the
ETC by the BJL definition.



FIELD THEORETIC INVESTIGATIONS IN CURRENT ALGEBRA 127

According to the discussion of Section 3 the following formula for the
ETC will enable us to calculate it.

lim po_ Ot#(p, CI)

po--)oo

= —ej.dax e’ X (0| [J*(0,x),75%(0)] I 7q) . (4.35)

Our program, therefore, is the following. We evaluate the triangle graph as
before, except that the photon with 4-momentum p is not off mass shell.
From the explicit formula for that amplitude, which is a covariant T*
product, as it must be since it arises from covariant Feynman rules, we
extract the non-covariant T product by dropping all seagulls — all poly-
nomials in p,. This provides us with an explicit formula for T, **(p, q) =
T, **¥(p,q)¢€,(q). Note that the present evaluation does not suffer from
the ambiguities which beset the calculation of T, ***(p, q) in the previous
subsection. The reason is that all the previously encountered ambiguities
are seagulls, which we are neglecting.

The evaluation of the relevant triangle graph appears in the literature [8].
The integral yields a finite result as before, and the limit indicated in (4.35)
is performed. The resulting commutators are summarized by the following
formulas.

[J9(z,x), J2(t,y)] = 2¢ *F% () 3;8(x~y) , (4.363)
(7@, %), T (6, 7)) = ¢ *FT(p)3;8(x-y) , (4.36b)
[Ji(t, %), J2(t,y)] = —cd; *FU(x)8(x—y) + c *F7(y)3;8(x~y) .

(4.36¢)

Here ¢ =ie/4n* and *F"Y is the antisymmetric, conserved electromagnetic
dual tensor: *F“”=§e“”°‘3(aa.43—aﬁ,4a). In offering (4.36), we do
not imply that we have derived the ETC by any operator technique. All
that is meant is that the limit (4.35) is non-vanishing and the non-zero
expression may be regained by evaluating the appropriate matrix element of
(4.36). For example, explicit computation shows that

2

lim p,T,°°(p,q) = ~——=e*"*p, q,€,(q) . (437)

po—roo 21{2
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The right-hand side of (4.37) is also obtained when (4.36a) is inserted into
the right-hand side of (4.35). Therefore, properly speaking, all we have
shown is that the ETC (4.36) has non-canonical contributions whose vacuum -
one photon matrix element is equal to the same matrix element of the
operators appearing in the right-hand side of (4.36).

We see that the ETC between time components has acquired a non-
canonical ST, Eq. (4.36a). Therefore according to the discussion of Section 2,
the Feynman conjecture may not be satisfied for both Ward identities. To
see that indeed the conjecture is violated [9], the ETC (4.36) is expressed
in the formalism of Section 2.

[T#(x), Js"(¥)} 8([x-y] - n) |
= C*(x;n) 8% (x —y) + S*”1*(y;n) Pg 3°8*(x —y) . (4.382)
The ST, according to (4.36), is
s (y;n)

= c*FRY(y) [gyn” +8n,] + c*F"(y) [gyn* +g%n,] .

(4.38b)
Equation (4.38b) may be expressed as a total divergence.
S¥1(y;n)
= ¢ *FH*Y n,n*l + c*F?7 n,nt].
(») ana[“’ ] (») 5%[7 ]
(4.38¢)

Hence the seagull which covariantizes the T product of J* and J,% is
given by

n
THY(x, y;n) =j‘ Sk (yin'ydnl §*(x~y) + 1,4%(x,y)
= t#(y;n) 8*(x —y) + 1,*%(x,») ,

™ (y;n) = c*F¥Y(y)n,n” + c*F*Y(y)n n* . (4.39)
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In the above, as before, 7,*”(x,y) is a covariant seagull, as yet undermined.
The covariant quantities 7, and I,"” defined from 7#”(y;n) by (2.47)
may now be evaluated.

n, ™ (yin) = n, L*¥(y) = c*F(y)n, ,
n,™*(yin) = n,L*(y) = ¢*F¥(y)n, . (4.402)
Evidently we have

L*(y) = —L,*"(y) = c*F*"(p) . (4.40b)

Finally to evaluate the covariant seagull we make use of the relations (2.48).
These require that the following combinations be free of gradients of the
d function

)
o T (%, ¥) = c*F*(y) 9, 8*(x~y) , (4.41a)
x
s 7" (x,y) — ¢ *F*()0,8%(x-y) . (4.41b)
Yy

The first of the above equations assures the validity of Feynman’s conjecture
in the u, vector Ward identity; while the second effects this state of affairs
in the v, axial Ward identity. i

It may be verified that a solution to both conditions (4.41) is

Tonv(x,y)
= c*FP(y)8%(x —y) + 2ce*” ™ 4 () 9,8%(x~y) .
(4.42)

Hence it appears that Feynman’s conjecture can be satisfied in both indices.
However, the seagull (4.42) is unacceptable for the following reason. The
explicit dependence of the seagull on the vector potential 4, indicates that
gauge invariance has been lost. Recall that all the operators, which we are
here considering, are to be sandwiched between the vacuum and one-photon
state. If one of these operators is the vector potential, then this matrix
element will not be gauge invariant. Therefore we must reject this seagull,
and content ourselves with one which allows one or the other of the two
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Ward identities to satisfy Feynman’s conjecture. Such a seagull may easily
be shown to be

To*(x,y) = —(1 + @) c *F*"(y) 8% (x -y) . (4.43)

Here gz is an arbitrary parameter, which is determined only when it is decided
which Ward identity is to be satisfied. The choice a = —2 effects cancellation
of Schwinger terms and seagulls in the u, vector identity;whilea = 0 performs
this service in v, axial identity. If the former choice is made, one then finds

0
T#* .I"“(x)Js “(»)
oy

= T*J*(x)3,J"(¥) + 2¢*F**(»)9,8%(x-y) . (4.44)

The second term on the right-hand side of (4.44) is the anomaly.

Thus we have understood why the Ward identities are not satisfied; the
ETC between J* and J,* departs from its canonical value, acquiring non-
canonical contributions. These non-canonical terms are consequences of
the intrinsic singularities of local field theory. They have the property that
naive current algebraic manipulations become invalid.

4.6 Anomalous Divergence of Axial Current

The anomalies of the triangle graph, which we have understood in terms
of non-canonical commutators and modified Ward identities, may also be
shown to lead to a modified divergence equation of the neutral, gauge
invariant axial current [10].

2

I (4.45)

ap.JS“ = JS + 2 ny

8n

Here J; is the naive value of the divergence, derived by application of the
equations of motion of whatever model we have under consideration.
We consider the fermion part of the axial current.

T#(x) = iy(x) v ¥ (x) . (4.46)

Since it is known that the equal time anti-commutator of ¥ and V involves

a three-dimensional 8 function, we must expect that lim ¢ (x)y () is
X—=y
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singular. Hence the deﬁniﬁon (4.46) for J s"(x) is necessarily singular.
To regulate this singularity, a small separation is introduced in a preliminary
definition for J .

T H(xle) = iv(x +€/2) Y’ Y (x—€/2) . (4.47a)

In the presence of electromagnetism, which we shall always consider to be
described by an external field (i.e., we work to lowest order in electro-
magnetism), the definition (4.47a) is not gauge invariant. If the electro-
magnetic potential 4* is replaced by 4* + 3* A, where A is arbitrary, and the
fermion fields are allowed to change correspondingly, Y (x) > eleAx) vi(x),
then no changes should occur in quantities of physical interest. The formula
(4.47a) does not have this property. A modified expression can be constructed
which is gauge invariant.

JH(xlela)

x+e€f2

= iy(x+e/2)yY ¥* gb(x—e/z)exp(ieas A“(y)dya) .

(4.47b)

In (4.47b) a should be set equal to 1 for gauge invariance. However, we
prefer to leave this constant unspecified for the time being. The local
physical current is obtained by choosing € to be small, averaging over the
directions of € and letting € =€, €" >0. The method of defining singular
products of operators by introducing a small separation is called the “point
splitting technique”. |

We now wish to calculate the divergence of (4.47b). To do so, we need
the equation of motion for Y. We shall here assume that the only interac-
tion is with the external electromagnetic field. More general, interactions
have been discussed in the literature [10] .

in oty =my — ey, A%y . (4.48)
By virtue of (4.48), the divergence of J *(x|ela) is

x-€f2

3, (xlela) = Jy(xlela) - ieJ M (xlela)

X [A“(x-*- €/2) —A“(x —€/2)—a aus

X+ é/2

A,,(y)dy”} ,
x-€/2
= Jy(xlela)—ieJ*(xlela)e® [3,A4,(x) —ad, A (x)+ 0(e)] .

(4.49)
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Here J (x|ela) is the regulated, split point formula for the naive divergence
in this model: 2myy°y. The usual naive result 3, J;* =J; is regained
from (4.49) if € is set to zero, uncritically. Then the last term in (4.49)
appears to vanish. This is legitimate when Js“(xlela) is well behaved as
€—>0. On the other hand, if a matrix element of J.*(x|ela) diverges as e >0,
a finite result may remain. Since the dimension of J.* is (length)~, one may
expect a cubic divergence. However, the pseudovector character of J "
reduces the divergence by two powers, leaving a possible linear divergence.
We now show that such a divergence is indeed present, and modifies the naive
formula for 8, J*(x|e€la).
Consider the vacuum expectation value of 3, J,;*(x|elz).

(OIBMJS“(xlela)IO) = (0|J5(xlela)| 0)
—z’ee“(Ole“(xlela)IO)[BaA‘u(x)—aa#Aa(x)JrO(e)] .

(4.50)

The vacuum element of J,*(x|ela) is non-vanishing because it is computed
in the presence of an external electromagnetic field. We have for the last
term in (4.50)

-7e*(0|J*(xlela)|0)

X+€f2

=e*(01Y(x+e/) Y’ v Y (x—€/2)] O)CXP(I'“I A4,(») dya)

x-€f2

x+ef2

=—Try’ v*€*(01TY(x—€/2) Y(x+ €/2) 10 Yexp (z‘ea f A%(y) dya)

x-€f2

x+ef2

=-Try’ y*€® G(x—¢/2,x + €/2) exp(ieaj A%(y) dy, )

x-€f2
4.51)

The fermion propagator function, G(x, y), in the external field A*, has been
introduced. In offering (4.51), €° is taken to be positive.
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G(x,y) possesses an expansion in powers of A* which may be summarized
graphically as in Fig. 4-3. The double line represents G; the single line is the
free fermion propagator S(x); while the x represents an interaction with
the external field. S(x) behaves as 1/x* as x >0. Therefore the successive
terms in the series for G(x,y) behave, when x >y, as (x-y)~?, (x-y)~2,
(x-y)~!, log(x-y), etc. For our calculation of G(x— %e, x + %e)
we need terms which do not vanish, for small €, when multiplied by e.
Therefore we set

G(x— g€, x+5¢€)
= S(-e) + ie[““y S(x=3e=»)7*S(y-x-76)4,(»)

- & [ty a2 56 de-) 15 (r-2) 77

x S(z-x—7€)A,(»)Ag(z) + O(loge) . (4.52a)
d4p . : .
S(x) = i-‘(27r)4 e P X[y p*-m]~" . (4.52b)
z
= + —— +
X y x y X y
21 27 Zy 29 Z3
——— o+ =AW oo
x ¥ X ¥y

Fig. 4-3. Fermion propagator G(x, y) in an external field.

By C invariance, only the contribution to G which is linear in A* is of interest.
That term in (4.52a) has the following momentum representation.

_d*pd’q

to[ =2 et P e S(p 4 ) VS =FOAD) - @)
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Therefore (4.51) becomes
—Tre*ySy* G(x— €, x + 3€)]

d4p d4q ]
(2m)°

agle-p ,-Ix.q

= —ieTry’y"

x S(p++q)7"S(p~549)A,(q) + O(eloge)

a .4
dpd qeie'pe

G ¢ T A

=eTry’y* 5
p

44
x S(p+5q)7'S(p—74q) + O(eloge) . (4.54)

The last equality follows by integration by parts. We now set € to zero.
The p-integral is just a surface term; it is easily evaluated by the symmetric
methods exemplified in the exercises. The remaining g-integral inverts the
Fourier transform of 4,(q). The final result for (4.54a) is

€
~Tre*y*v* G(x—ge,x+ 5e)] _, =~ g—;z-*F““(x). (4.54b)

Therefore returning to (4.51) and letting € go to zero, we have
(018" J,°(x1a)10)

2 ’1 +
= (0|J,(xla)|0) + f-%;52-"‘F"“’(;«:)Fm(x) . (4.55)

It is seen that when the gauge invariant definition is selected, 2 = 1, then
the divergence of the axial current contains an anomalous term. The naive
divergence equation is regained at the expense of gauge invariance ifa =—1.
One may give a simple, heuristic argument which illuminates the origin of
this anomalous divergence term. Consider the naive axial current in the
model discussed in this subsection. In order to assure gauge invariance, a
Pauli-Villars regulator field ¥ is introduced, and correspondingly a regulated
axial current is defined.

JH = J* -Gk (4.56a)
Reg
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Fs* is constructed from the regulator fields, in the same fashion as J,*
is constructed from the usual fields. The physical axial current is regained
by letting the mass M of the regulator field pass to infinity. The divergence
of (4.56a) is |

9, J" = 2myySy — 2MIy5 ¥ (4.56b)
Reg
Now when M — oo, the regulator field contribution to (4.56b) may leave a
non-vanishing remainder if the matrix elements of ¥y® ¥ behave as M~
for large M. Detailed calculation shows that this indeed occurs.

Note that the anomalous divergence does not directly affect our previous
derivation of the Sutherland-Veltman theorem for #° = 2v. The amplitude
T*¥, which is considered in (4.3), is already 0(e?), the two photons having
been contracted out of the state. Hence to order e we need not inquire
into any modification of 9, J s". The anomaly in that argument came from
the commutators and seagull, as was explicitly demonstrated. Nevertheless
it is possible to use an anomalous divergence equation to give an alternate
derivation of the true Sutherland-Veltman theorem [11]. The photons
are not contracted out of their state, and we consider (4.2) in conjunction
with (4.45).

T™(p,q) = €*"*p, g, T(K*) = (u* -k*)(016(0) |7.p;7,q)

e2

= S (k* =) (O [*F¥*(0) F,,(0) |7, P57, )

+

1 !
F[J.2 (,ﬁ_,.k?) aa(0|Jsa(0){'y,p"Y ,Q) . (4573)

The last term in (4.57a) is the divergence of a gauge invariant, three index
pseudotensor, hence the original Sutherland-Veltman argument applies.
We conclude that it will not contribute to T(0). Note that in this derivation
we do not pull the divergence through any T* product, so we need not
concern ourselves with commutators. The matrix element of the anomaly
may be evaluated to lowest order in electromagnetism. Its value is

2
—e !
s rr K~ QIFRO F, 017, p:74)
e’ (u*-k?)
= ehveb . 4.57b
2N2F #2 pa qﬁ ( )

Therefore T(0), as before, is e? /27 F .
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This exercise shows that the anomalies in commutators, which are
encountered in the original derivation, and the anomalous divergence are
two sides of the same coin. One must be present when the other is.

4.7 Discussion

We conclude this treatment of the anomalies of the neutral axial-vector
current with a discussion of various disconnected, but important topics.

(1) Consider massless spinor electrodynamics [12]. The present arguments
indicate that it is impossible to define a conserved gauge invariant axial
current, in spite of the fact that chirality is a symmetry of the theory. Never-
theless there does exist a conserved, gauge invariant axial charge [11]. This
charge is constructed as follows. Define

2

Tt =JHr - *FHV A (4.58a)

412

J M is gauge invariant, but its conservation is broken by the anomaly. On the
other hand J # is conserved, but not gauge invariant. The charge Q. con-
structed from J * is time-independent.

= jdsx .750 (x) . (4.58b)

Performing a gauge transformation on Qs : 64, =0,A, we see that O is
gauge invariant, even though J,* is not.

Id x ( *FO"(x)) 9, A(x)
jd x (

*Foz (x)) 9; A(x)

*FOl(x)

=0. | (4.58¢)

The conservation and antisymmetry of *F"? has been used.
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Therefore, in spite of the trouble with the local axial current, globally
axial symmetry can be implemented in the model. This has the consequence
that any property of the model, based on axial symmetry, will be maintained
in perturbation theory. For example, the anomaly in the divergence cannot
be used to generate a mass for the election [13].

In massless electrodynamics, one may describe the anomaly as a clash
between two symmetry principles: gauge invariance and chirality. In pertur-
bation theory it is impossible to maintain both, though either one can be
satisfied. Such a clash between the conservation of two symmetry currents
has been encountered before in the model field theory of spinor electro-
dynamics in two dimensions [14].

(2) An important question is whether or not higher order effects modify
the anomaly. An argument may be given to the end that in spinor electro-
dynamics and in the ¢ model, they do not [11]. The argument is as follows:
for definiteness we consider the former theory. To fourth order in e, the
axial-vector, vector, vector triangle graph has the insertions represented in
Fig. 4-4. If the photon integration is carried out after the fermion loop
integration, then the fermion loop integral is completely convergent. There-
fore all shifts of integration, which are required to verify the Ward identities
may be performed with impunity. Thus, it is argued, that no anomalies will
be present in this or higher orders.

AN A L
A A A

Fig. 4-4. Radiative corrections to the axial-vector, vector, vector triangle graph.

This argument may be criticized because it is somewhat formal [15]}.
The rules of renormalized perturbation theory require one to perform the
photon integrals first, and then the renormalized vertex and propagator
corections are to be inserted into the triangle skeleton. In order to resolve
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this question, explicit calculations for the graphs in Fig. 4-4 have been
performed, and they support the formal argument [16]. It should be noticed,
however, that the fourth order contribution is characterized by the fact that
all indicated corrections are either self-energy or vertex insertions. This
feature is not true in higher orders, and perhaps something new will be found
there [17]. .

(3) The models in which the axial anomaly has been exposed: spinor
electrodynamics and o model, do not have much dynamical significance for
hadron physics. However, as we have stated before, any theory with fermion
fields out of which the axial vector current is constructed, will possess the
anomaly, as long as electromagnetism is coupled minimally. Therefore, it
is to be expected that in general PCAC should be modified in the presence of
electrodynamics. Thus when we consider the neutral member of the octet
of axial currents, %;"(x), (this current is% of the previously defined J.*)
PCAC should be modified by

2

d

\ T = Futo, + c

2

*FRYE,, . (4.59)

87
Here ¢ is constant which, of course, we cannot derive theoretically in a
general fashion. The contribution to ¢ from the triangle graph is determined
by the coupling of fermion fields to the axial and vector currents. In the ¢
model this contribution is % . In a general quark triplet model where the
charges of the quarks are Q, Q —1 and Q -1, the triangle graph contributes
Q- % to ¢ [11].

By use of the PCAC hypothesis, and the corrected Sutherland-Veltman
theorem, ¢ may be determined experimentally. The currently published
7° > 2y width of 7.37+15¢eV sets |c| at 0.44. Further experimental
analysis indicates that most likely the sign of c is positive. Thus the theo-
retical value for ¢ as given by the o model, triangle graph, ¢ = % , is in good
agreement with the data. If one assumes that in quark models the entire
value of ¢ is determined by the triangle graph — a bold hypothesis since one
does not know the nature of quark dynamics — Q =1 is preferred, and the
conventional quarks with Q = % are excluded.

Perhaps at the present stage of understanding of hadron physics, one
should not expect to be able to calculate ¢ theoretically. Just as the coeffi-
cient of the usual term in 8, %* is taken from experiment — Fu® has not
been calculated — so also we should content ourselves with an experimental
determination of the anomaly.

When c is fitted tc the pion data, and a model for SU(3) x SU(3) symmetry
breaking is adopted, modified Sutherland-Veltman theorems for n = 2+ and
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X 2y may be derived. Such calculations have been performed in the
context of the (3,3) ®(3, 3) symmetry breaking scheme [18]. The results
for the n width are consistent with experiment (~ 1 keV), while the X width
comes out remarkably enhanced beyond 80 keV. Present experimental data
(< 360 keV) provides no check. Such a check would be very interesting,
since this large value is very difficult to understand from any different point
of view.

(4) One may wonder why we speak of a modification of PCAC; why one
cannot continue using the divergence of the axial current as the pion inter-
polating field. The answer lies in part in our model calculations where we
found that the term *FH®F , is manifestly not smooth when its matrix
elements vary off the pion mass shell. It is this property which we have
abstracted, and which we assume holds in nature, as well as in models. Our
assumption is supported by the observation that the dimension of the anomaly
is 4, and there is no reason to believe that such an operator is smooth.
Finally, by adopting the present philosophy, the experimentally unsatisfac-
tory prediction of Sutherland and Veltman is avoided.

(5) The discovery of anomalous Ward identities in the present context
engendered a systematic study of all useful Ward identities in SU(3) x SU(3)
models [19]. Although other anomalous Ward identities have been found,
they seem to be without interest. The only other triangle graph anomaly
is in the triple axial vector vertex, which has not, as yet, been used in physical
predictions.

Fig. 4-5. Divergent contribution to axial vector vertex function.

(6) In spinor electrodynamics, the proper electromagnetic vertex func-
tion is renormalized by the same infinite constant which effects electron wave
function renormalization. This desirable state of affairs is a consequence of
the Ward identity satisfied by that function, Before the discovery of anoma-
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lous PCAC, it was thought that the proper vertex function of the axial
vertex current possesses this property as well, as consequence of the axial
Ward identity [20]. The anomaly has destroyed this result; the axial vector
vertex function remains infinite after wave function renormalization. The
offending graph is the one of Fig. 4-5. One consequence of this is that
radiative corrections to neutrino-lepton elastic scattering are infinite [11].

References

[1] D.G. Sutherland, Nucl. Phys. B2 (1967) 433; M. Veltman, Proc. Roy. Soc. A301
(1967) 107. _

[2] The argument here follows J. S. Bell and R. Jackiw, Nuovo Cimento 60A (1969)
47.

[3] M. Gell-Mann and M. Levy, Nuovo Cimento 16 (1960) 705.

[4] The evaluation of this graph was first performed by H. Fukuda and Y. Miyamoto,
Prog. Theor. Phys. 4 (1949) 347 and J. Steinberger, Phys. Rev. 76 (1949) 1180.
Steinberger considered pion decay in the old PS-PS model of n-nucleon inter-
action. In that theory the pion decays into two photons; the lowest order graphs
being given by Fig. 4-1. It presumably is only an accident that this completely
implausible calculation gives a result in excellent agreement with experiment.

[S] This careful and unambiguous evaluation is given in Ref. 2.

[6] A historical note is here in order. The first people to calculate the #° — 2y process
in field theory were H. Fukuda, Y. Miyamoto and J. Steinberger, Ref. 4. In
addition to the PS-PS calculation, where the #-N vertex is o*, Steinberger also
calculated the same amplitude in the PV-PS model, where the n-N vertex is
ikyv® v The second calculation is identical to our Pauli-Villars regulator
method evaluation of T®KP, Steinberger then attempted to verify the equivalence
theorem between PS-PS and PV-PS theory, which is based on the formal Ward
identity (4.16b); and of course failed to do so. He noted this puzzle, and then
ceased being a theoretical physicist. Two years later, J. Schwinger, Phys. Rev,
82 (1951) 664, gave an analysis and resolution of the problem. This work was
essentially forgotten, and its significance for modern ideas of current algebra
and PCAC was not appreciated. The problem was rediscovered in the ¢ model by
J. S. Bell and R. Jackiw, Ref. 2; and independently and simultaneously in spinor
electrodynamics by S. L. Adler, Phys. Rev. 177 (1969) 2426. Schwinger’s analysis
is similar to the one we shall present in subsection 6.

[7] This presentation follows R. Jackiw and K. Johnson, Phys. Rev. 182 (1969) 1459.
The same anomalous commutators have also been given by S. L. Adler and
D. G. Boulware, Phys. Rev. 184 (1969) 1740.

[8] L. Rosenberg, Phys. Rev. 129 (1963) 2786. Rosenberg’s formula appears aiso in
Adler’s paper, Ref. 6.

[9] That Feynman’s conjecture is violated in #° — 2y was first pointed out by R.
Jackiw and K. Johnson, Ref. 7. The present analysis follows the paper of D. J.
Gross and R. Jackiw, Nucl. Phys. B14 (1969) 269.



[10]

[11]
[12]

[13]

[14]
[15]
[16]
[17]

[18]

[19]

[20]

FIELD THEORETIC INVESTIGATIONS IN CURRENT ALGEBRA 141

Equation (4.45) was first derived by J. Schwinger, Ref. 3. The same form was
given by S. L. Adler, Ref. 6, on the basis of an investigation in spinor electro-
dynamics. The presentation in this section is analogous to Schwinger’s and has
been given in the contemporary literature by R. Jackiw and K. Johnson, Ref. 7;
C. R. Hagen, Phys. Rev. 177 (1969) 2622 and B. Zumino, Proceedings of Topical
Conference on Weak Interactions, CERN, Geneva, p. 361 (1969).

This analysis is due to S. L. Adler, Ref. 6.

It is possible that such a theory has physical significance. It has been suggested
by K. Johnson, R. Willey and M. Baker, Phys. Rev. 163 (1967) 1699, that the
bare mass of the electron is zero and that the physical mass is entirely of dynami-
cal origin. _
For example, it might be thought the anomaly allows a mass to be generated in
a massless theory without the intervention of Goldstone Bosons. That this is not
the case in theories with Abelian vector mesons has been demonstrated by H.
Pagels (private communication).

J. Johnson, Phys. Lett. 5§ (1963) 253.

R. Jackiw and K. Johnson, Ref. 7.

S. L. Adler and W. Bardeen, Phys. Rev. 182 (1969) 1517.

Ambiguities in Ward identities containing two loop integrations have been found
by E. Abers, D. Dicus and V. Teplitz, Phys. Rev. D3 (1971) 485.

S. L. Glashow, R. Jackiw and S. Shei, Phys. Rev. 187 (1969) 1916. An alternate
treatment of SU(3) X SU(3) symmetry breaking together with axial current
anomalies has been considered by G. Gounaris, Phys. Rev. D1 (1970) 1426 and
Phys. Rev. D2 (1970) 2734. Gounaris’ theory makes use of a detailed pheno-
menological Lagrangian. Correspondingly his results are more precise than those
of the above reference, though, of course, they are model dependent. Gounaris
gives predictions for off mass shell photon processes, as well as for the processes
considered by Glashow, Jackiw and Shei. Agreement is obtained for #° — 2+ and
n — 2+; but the prediction for X° — 2+ is decreased by a factor of 10.

K. Wilson, Phys. Rev. 181 (1969) 1909; I. Gerstein and R. Jackiw, Phys. Rev.
181 (1969) 1955; W. Bardeen, Phys. Rev. 184 (1969) 1849; R. W. Brown, C. C.
Shih and B. L. Young, Phys. Rev. 186 (1969) 1491; D. Amati, G. Bouchiat and
J. L. Gervais, Nuovo Cimento 65A (1970) 55.

G. Preparata and W. Weisberger, Phys. Rev. 175 (1968) 1965.

5. Electroproduction Sum Rules

5.1 Preliminaries

In the electroproduction experiments, an electron is scattered off a nucleon
target, typically a proton. The hadronic final states that are observed, are
thought to arise, in the context of lowest order electromagnetism, from the
inelastic interaction between an off mass shell photon and the proton. The
process is depicted in Fig. S-1. By measuring total inelastic cross sections,
that is by summing over all final states, one obtains a determination of the



