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my presentation. I urge you to do them! Some solutions to the Exercises
can be found in a separate section.

2. Description of Vector Gauge Theories

2.1 Action and Equations of Motion

We shall be dealing with field theories whose basic dynamical variables
are vector fields 42 (x) called potentials. The index u refers to Minkowski
space-time where the coordinate vector x* = (¢, r) is defined with metric
8y = diag (1, -1, —1); we shall deal not only with the physical, four-
dimensional world, but also with models in two and three dimensions —
these are useful for physical and pedagogical reasons. Throughout, the
velocity of light is set to unity; however h will be retained so that classical
effects may be clearly separated from quantum ones. The index “z” on the
potential labels internal degrees of freedom, and the theory is invariant
against a (compact and in general non- Abelian) group of transformations
operating on these degrees of freedom. The index 4 ranges over the dimension
of the group: for SO(3) or SU(2) it goes from 1 to 3; for SU(3), it ranges
to 8; while for the Abelian case a is single valued, and is suppressed. (For
us, upper and lower internal symmetry indices are equivalent.) _

From the potential (also called connection by the mathematically minded )
the field strength F fw (curvature) is constructed by the formula

F, = 3,49-3,45 +8fpcALAS | (2.1)

Here 9, is the derivative with respect to x¥, f,,. are completely anti-
symmetnc structure constants of the group, g is a coupling constant, and
repeated indices are summed.

There exists a useful matrix notation for the gauge theory. Consider
anti-hermitian representation matrices 7% for the Lie algebra of the invariance

group,

[Ta, Tb ] = fabc Tcy (Ta)T =_Ta 3 (22)
normalized, for example, by

tr T¢ Tb——-—ﬁab ’ ' (2.3)
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and define a matrix-valued vector potential by
- a ,a
A, =gT 4, . (2.43)

from which the components can be regained with the help of Eq. (2.3):
2
A% =- —trT%4
o 4

[For SU(2), T? = ¢%/2i, where the ¢? are Pauli matrices; for SU(3) the
3 x 3 Gell-Mann matrices A% /2i are used.] The matrix-valued field strength

. (2.4b)

F,,=gTF,, , (2.5a2)
a 2 a
Fo=——ul"F,, , (2.5b)
g .
is given by
F,,=0,4,-0,4, + [A“, A1 . (2.6)

This compact notation encompasses the Abelian (Maxwell) theory (electro-
dynamics), where the matrices reduce to numbers, and the commutators
vanish. When the matrix structure is present, the commutators are non-
vanishing and the theory is called non-Abelian. [We emphasize that the
commutators in Eq. (2.6) are considered only in the matrix space of the
group generators; they are not quantum mechanical. ]

Exercise 2.1. Convince yourself that any representation matrices, not only those of
the defining representation, may be used for the matrix notation. Of couzse if their
normalization differs from (2.3), the inversion formulas (2.4b) and (2.5b) are
correspondingly modified.

The matrix and component notations will be used interchangeably; no
confusion arises because the context leaves the convention unambiguous.
For the Abelian theory, where the two collapse into one, I shall remain
with the real “component” notation for potentials and fields.

We also introduce the gauge covariant derivative D,: operating on a
matrix quantity M = M? T it gives |

DM=23,M+[A,M] . (2.72)
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In the gauge covariant derivative, the ordinary derivative is supplemented by
a commutator, which however vanishes in the Abelian theory so that covariant
and ordinary differentiation coincide. Equation (2.7a) may also be presented
in component notation:

— b
(D“M)" = apM" + gfabcApM" . (2.7b)
The covariant derivative is distributive,
D,(MM'y= (D ,M)M' + M(D,M") |, (2.82)

and when operating on functions rather than matrices it reduces to the
ordinary derivative; for example

3, (tr MM')=tr (D, M)M'+ trt M(D,M") . (2.8b)

Exercise 2.2. Show that
(DpDv-DvD“)M= [FW,M]. (E2.1)

Exercise 2.3. Suppose A " is changed by an infinitesimal amount, 4, - A4 +6 A4 ..
. ; M M M
Show that the first-order change in F up 18

8F,,=D,6A4,~D,8A,. (E2.2)

Let us observe that from its definition (2.1) or (2.6) F v Satisfies an
identity, called the Bianchi identity: '

DyFpg,+ DgFpq+ D, Fog=0 . (2.9)

This is anti-symmetric in its three indices «, 8, v; hence in two dimensions
it is vacuous. In higher dimensions, the formula may be presented more
compactly by defining the dual field strength with the help of the totally
anti-symmetric tensor appropriate to the dimensionality of space-time.
In four dimensions, the dual is again a second-rank tensor,

*puv = L fE o | (2.10a)

Fog=— 7 €apu F" , P =1=—co2s , (2.10b)
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and the Bianchi identity (2.9) becomes
D *F¥ =0 . (2.11)

In three dimensions the dual is a vector,

L %eﬂaﬁFaﬁ , (2.12a)

Faﬂ=eaﬂ“*F“ ’ 6012 =1 =€012 s (212b)

and the Bianchi identity (2.9) requires the dual field to be covafiantly
conserved,

D*FF=0 . (2.13)

Finally in two dimensions, the dual is a scalar, which is unconstrained since
(2.9) becomes vacuous.

1
*F=SeVF,, (2.}4a)
Fo,=-¢,*F , '=l=-¢, . (2.14b)

We have still to provide dynamical field equations which govern the
space-time behavior of our variables. [The above Eqs. (2.9) —(2.13)
are not dynamical; they are identities.] The equations of motion may be
presented in terms of an action /, which is a functional of 4 ,. The require-
ment that J/ be stationary against variations of A4 . gives Euler-Lagrange
equations which are the field equations for 4 ,.

The Yang-Mills theory results by taking the action to be the space-time
integral of a Lagrangian (density) £y, the latter being the simplest
local invariant function constructed from £, [4]:

Iyy = Idx QYM ,

1

2g py

1
== FHvapas (2.15)
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The Yang-Milis field equations then read

a
542

=0 « Dpr’v=0 > (2.163)

or in component from
30, F ™ +gf, AP FHe =0 (2.16b)

We see that even in the absence of other matter couplings, the non-Abelian
theory is non-trivial, nonlinear and interacting. (Further possible contri-
butions to the gauge field action, even in the absence of matter fields, as well
as interaction with matter fields, will be discussed later.)

It is clear that the non-Abelian Yang-Mills theory is a generalization,
into non-commuting matrix-valued potentials and fields, of the Abelian
Maxwell theory, which in Yang-Mills terminology we call an Abelian U(1)
or SO(2) gauge theory. Notice however an important difference. The
Maxwell theory’s dynamics can be entirely formulated in terms of field
strengths: the Maxwell equations are (the Abelian analogs of) (2.9) or
(2.11) and (2.16), while the electromagnetic vector potentials are con-
ventionally introduced to solve those Maxwell equations which coincide
with the Bianchi identities, (2.9) or (2.11). Thus there is a historic prejudice
that potentials are unphysical, secondary quantities and only field strengths
are physically important. However, this attitude is unwarranted in view of
modern developments. Already for electromagnetism, one knows that
vector potentials are physically significant within quantum mechanics ( Bohm-
Aharanov effect), while the Yang-Mills theory cannot even be formulated
without reference to the potentials, since the covariant derivatives, occurring
in field equations, involved 4 ,. Other similarities and differences between
Maxwell and Yang-Mills theories will be mentioned later.

2.2 Symmetries

Next let us discuss invariance symmetries of the action (2.15); i.e. we
consider transformations which take one solution of the field equations
(2.16)into another.

The most important symmetry of the Yang-Mills gauge theory is its
gauge invariance; indeed the particular form taken for the dynamics is
chosen so that symmetry is respected. Let U be a position-dependent element
of the group which transforms the internal symmetry degrees of freedom
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of the theory, and let U be given in the same representation as the matrices
T?. [For SU(2), U is a 2 x 2 unitary matrix with unit determinant; similarly
for SU(3), where U is 3 x 3.] Then a gauge transformation of the vector
potential matrix 4, is defined as

U—gr- - — - t — 77-1
A,~>A; =U A, U+ U lE)NU—A“+U lDMU, U'=U"". (2.17a)
This induces the following similarity transformation on the field strengths:
U _ -
F,,~>F;,=U levU . (2.17b)

One easily verifies that this is a symmetry transformation of the field Eq.
(2.16), ie., if 4 " F v solve them, so do A4 g, F f{v for arbitrary U. Corre-
spondingly the action (2.15) is invariant, as also is the Lagrangian since
£y involves a trace which is invariant against similarity transformations.

In the above, we have discussed finite gauge transformations. One may
also consider infinitesimal ones. If U is written as

U=e® , (2.18a)
and expanded in powers of ©, which is anti- Hermitian,

U=I+0+..., et =-0 , (2.18b)
then the gauge transformation to first order in © reads |

A,~A, +84, , 84,=D0O (2.19)

F,,~F, +8F,, , &F,=[F,.0] , (2.19b)

v’

[ Compare this with Egs. (E2.1) and (E2.2).] Equation (2.19) becomes in
component notation, ® = §4 T4

1
8o A% = - 3,09 + fpcAb0¢ (2.20a)

— b '
8o F%, = fupe F2,0° (2.20b)

These transformations are called “‘local” gauge transformations, because
U and O are taken to be local matrix functions of the space-time coordinates.
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When they are constant, the transformation reduces to a conventional internal
symmetry transformation, also frequently described as a “global” gauge
transformation. This is something of a misnomer; I prefer the name *rigid”’
gauge transformation.

One immediate and important consequence of local gauge invariance
is the absence from the Lagrangian of a mass term for A . M? trd, A“
is not locally gauge invariant.

The conserved Noether current j* for an invariant Lagrangian %, which
satisfies the invariance condition that must be established without use of
equations of motion |

07 oL
8.¥ = - 3A4% + — aﬂéAf, =0 , ‘ (2.21a)
04, 00,45, -
is given by
8L
it = T 847 . (2.21b)
00,4,

For local gauge transformations, (2.19) and (2.20), the conserved current
is
j¥=— uF*pe , (2.22)

g2

while for rigid transformations, it reads

R b 4c

jg = ach“v A4, (2.23)
where I am using the component notation and have cancelled away the
constant transformation parameter 6 9.

Exerczse 2.4. With the help of the field equations (2.16) show that both j& g in (2.22)
and jH g in (2.23) are conserved. Hint: use (2.8b) and (E2.1). The conservation of
these currents is of course expected, since the Lagrangian (2.15) is invariant against
these transformations: 66.2" =0.

Obviously non-Abelian gauge invariance is a generalization of familiar
electromagnetic gauge invariance, where U = exp(if/e) and both U and
6 are functions, not matrices, thus reducing (2.17)and (2.19) to

1
Ay~ A,+ —3,0 (2.24a)
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F,,~>Fyy (2.24b)
(An electromagnetic coupling constant e is conventionally inserted, even
though the free Maxwell theory is without interaction.)

However there are important differences between Abelian and non-
Abelian gauge transformations: The electromagnetic gauge transformation
(2.24) is the same both in its infinite and infinitesimal form, but for the
Yang-Mills theory the two differ; compare (2.17)and (2.19). Whileiterating
infinitesimal transformations produces finite transformations, not all finite
non-Abelian transformations can be reached in this way. An equivalent
statement is that there are finite gauge transformations U which cannot be
continuously deformed to the identity /. This fact has far-reaching conse-
quences for the topological structure of non- Abelian gauge theories, and I
shall elaborate on this extensively in subsequent lectures.

Another important difference between the Abelian and non-Abelian
theories is that the Yang-Mills field strength is not gauge invariant. As
is seen from (2.17b), an transforms by a similarity transformation; or
equivalently from (2.20b), F fw transforms according to the adjoint repre-
sentation. We say that F,, is gauge covariant. This highlights once again
the fact that field strengths are not fundamental to the theory. Indeed one
cannot in general determine uniquely the potential, even up to gauge trans-
formations, which gives rise to a specific field strength; i.e. gauge non-
equivalent A4 ,’s can lead to the same F,, [5]. In spite of the more compli-
cated way that gauge transformations operate in a non-Abelian gauge theory,
we will insist that all physical quantities be gauge invariant, just as in the
Abelian theory.

Exercise 2.5 Consider the charge constructed from the time components of the
conserved current (2.23):

Q°= fdriltr . (E2.3)

Show that Q2 is time-dependent, provided j q falls off sufficiently rapidly at large
r. Since j, is not gauge invariant, the fall-off requirement restricts the large r
behavior of gauge transformations. While the current jf; has no simple gauge trans-
formation properties, show that Q% is gauge covariant against gauge transformations
U which approach a definite angle-independent limit as r approaches infinity.
Hint: use the time component of the Yang-Mills equation to express Q% as an
integral over a surface at spatial infinity.

Exercise 2.6. Show that no new charges, beyond Q%, arise by integrating over space
the time component of jg, (2.22), provided ® approaches an angle-independent
limit at spatial infinity.
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Gauge invariance of the theory may be used to set one space-time compo-
nent of the vector potential to zero by appropriate choice of I/ and without
loss of physical content. While this will be useful in our discussion of the
quantized theory’s Hamiltonian structure, it has a very dramatic effect on
two-dimensional Yang-Mills theory: when one component of the vector
potential is zero, the commutator [ 4*, 4¥] vanishes and the theory becomes
linear and trivial, just like two-dimensional, free electromagnetism.

Thus far I have discussed symmetries of Yang-Mills theory associated
with transformations of internal degrees of freedom; of course there are
also symmetries associated with transformations of space-time coordinates
x*. The infinitesimal action of these transformations on coordinates

xboxb+saxk | saxb=—ff(x) , (2.25)

induces a transformation on potentials, which conventionally is given by a
Lie derivative:

6fA“= faaa Ap+(ap, fa)AaELpr, : (226)

A Lie derivative of a tensor T',"" with upper and lower indices is defined
by

LeTy = 1%0,Ty0
+ (a“fa)T:'.'_'. + ...
—(0 Ty = - (2.27)

where the omitted terms are a repetition of the first, for each index. Note
that in general L,A4, * g,,LrA".

Exercise 2.7. Show that the transformation of the field strength which follows from
that for the potential [cf. (E2.2)],

is also given by the Lie derivative,

For the Minkowski spaces on which our theories are defined, the coordinate
transformations of space-time translation and Lorentz rotation are symmetry
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operations of the Yang-Mills theory. Together they form the Poincaré group,
and their infinitesimal action is give by

Translation f* =a* (2.28)

Lorentz rotation f* =w" x¥ , wh =—w *. (2.29)

Here ¢* and w" are constant infinitesimal parameters of the transformation.
Note that for these LfA u = 8wl fA" and the f*’s are Killing vectors, i.e.,
they satisfy the Killing equation,

3,f, +3,f, =0 . : | (2.30)

Exercise 2.8 The Lie bracket of two vector functions f* and gM is defined by
f“aag“-—g"‘aaf“ =pt . _ (E2.6)
Show that the commutator of two coordinate transformations (2.25) satisfies
(67,81 ==8, - - (E2.7)
and the same istrue for the transformations of the potentials (2.26). [N.B.: § r aaA u =
9,0 fA u Lf(aaA “).] Show that the Lie bracket of two Killing vectors is again a
Killing vector. With (2.28)and (2.29) verify that Lie bracketing these transformations
reproduces the commutators of the Poincaré group.
Under the Poincaré transformations (2.28) and (2.29), the Lagrangian
changes by a total divergence,

8 Ly =0, (2.31a)

Q=L (231b)

The action changes only by surface terms so that the equations of motion are
invariant; i.e., the Yang-Mills theory is Poincaré invariant.

The derivation of the conserved Poincaré currents is somewhat awkward.
If one applies directly Noether’s theorem to a Lagrangian % which is not
invariant, but changes by a total derivative a“ QM.

5% =2,Q (2.32a)
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then the formula for the conserved current generalizes from (2.21) to [6]

0L

jt=——"—-s84,-Q% . (2.32b)
29, A¢

[Just as in (2.21a), Eq. (2.32a) must be established without using equations
of motion.] In the present case this produces a gauge non-invariant result,
since 8 A% is not gauge covariant, and the Noether currents are not expressed
in terms of the conserved, symmetric and gauge invariant energy-momentum
tensor.

1
OK* =—FKEFT+ - il el

2 1
= — WERRL - g (233)

Exercise 2.9. By using the equations of motion (2.16) prove that 3 uf MY =0, Hint:
Equation (2.8b) and the Bianchi identity (2.9) will simplify the calculation.

However, there exists a well known procedure for “improving” the Noether
currents by adding to them superpotentials — divergences of anti-symmetric
tensors 9, X*¥, X#¥ = —X*# — which do not spoil current conservation,
since apa X* = 0 [6]. (" is not uniquely defined by the equation
BMQ“ = § £!) With such improvement, the conserved Poincaré currents
are

j#=0%5, | (2.34)

with f, given by (2.28) or (2.29). This is the so-called Bessel- -Hagen form
for the current [7].

Exercise 2.10. Find the superpotentials that must be added to the Noether current
to arrive at (2.34). The possibility of finding these superpotentials is not accidental,
but arises from the Lorentz invariauce of the theory. For a general discussion see
ref. [6].

By using some geometrical properties of gauge fields, one can arrive at
(2.34) by an alternate, more elegant, method, which is particular to a gauge
theory. Let us first observe that one can write & 4 u =LA, in terms of a
gauge covariant quantity and an (infinitesimal ) gauge transformation.

LeA, = f20,A4, + (3, f*)Aq = f*F,, +D,(F*4,) .  (235)
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Since the Yang-Mills theory is invariant against gauge transformations, an
(infinitesimal ) coordinate transformation supplemented by an (infinitesimal)
gauge transformation, with gauge function —f*A4_, is still a symmetry
transformation. Therefore, we can define the action of coordinate transfor-
mations on gauge potentials by an alternate rule, which is gauge covariant [8] .

8;A,=LeA, -D,(f*4,)= f*F,, . (2.36)

When Noether’s theorem is used in conjunction with this gauge covariant
transformation, the Bessel- Hagen current (2.34) is obtained immediately.

Exercise 2.11. Show that

3 =D 3 F 4 — s o a
8F, =Dy 8A,~Dy8pA, = f*DoF, + 3, [ Fo +3,f"Fu . (E2.8)

This may be called the gauge covariant Lie derivative. Hint: use the Bianchi identity.

Exercise 2.12. Show that the gauge covariant transformations on the potentials do
not follow (E2.7), rather one has -

[Sf,sg]A“=-3hA“—Dp(fagﬁFaB) : (E2.9)

For the finite version of these transformations see ref. [8].

In our discussion of symmetries no attention has been paid to the fact
that one is dealing with quantum field operators, rather than classical c-
number fields. There are two sources of differences between the two, which
could invalidate the results here presented. First, there is the problem of
operator ordering — in all our manipulations we ignored the quantum
mechanical non-commutativity of the quantities with which we were working.
Second, a difficulty specific to quantum field theories is the occurrence of
infinities and hence the necessity of regularizing and renormalizing the
theory. This in general produces further terms in the action, equations of
motijon etc. — the counter terms — which could spoil the symmetries that
we have discussed. (When speaking of symmetries in the quantum field
theory, we consider the parameters of the transformation — e.g. 8¢ for
gauge transformations, a*, wﬁ for Poincaré transformations — to be c-
numbers.)

An analysis of these questions requires a course in renormalization theory,
well beyond the scope of my lectures. Let it suffice to state that the Yang-
Mills model presented here can be quantized so that gauge invariance and
Poincaré invariance are indeed preserved. However, as soon as additional
couplings to other fields are included, it may not be possible to maintain
the symmetries, and we shall discuss this below.
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Whenever a classical theory possesses a symmetry, but there is no way
of quantizing the theory to preserve that symmetry, we say that there are
“anomalies” in the conservation equations for the symmetry currents. I am
telling you, without proof, that for Yang-Mills theory there are no known
Poincaré or gauge anomalies. |

An example of anomalies is found in four-dimensional Yang-Mills theory,
which on the classical level possesses a larger space-time symmetry than
Poincaré invariance. Observe that the divergence of the Bessel-Hagen current
(2.34) with arbitrary f* can be written as

3,i%=(3,0"")f, +0" 3, f, = S0, f,+9,f,) . (237)

In passing from the first equality to the second we have used the symmetry
of 8 *¥ in (u, v) and the conservation of 8 #¥; see Exercise 2.9. For a Killing
vector (2.30), in any number of dimensions, the term in parentheses vanishes;
J }‘ is conserved and this is the previously discussed Poincaré invariance.
Maintaining this symmetry on the quantum level is equivalent to constructing
a conserved, symmetric, renormalized energy-momentum tensor and this can
indeed be done [9]. |

In four dimensions the formal (i.e. classical, not quantized and renor-
malized) energy-momentum tensor (2.33) is also trace-free in the (u, v)
indices. Hence (2.37) may also be rewritten as

0, /=2 0" (3,1, +3,f,~ 7 &uwf*) - (2.38)

Consequently if the infinitesimal coordinate transformation f* satisfies the
four- dimensional conformal Killing equation,

0, f, +0,f,— Lg,0,f*=0 , (2.39)

J }‘ will be conserved, as a consequence of the theory’s invariance against
these further coordinate transformations. Vector functions solving (2.39)
are called conformal Killing vectors; every Killing vector is a conformal
Killing one, but one can find other conformal Killing vectors. The solutions
of (2.39) beyond (2.28) and (2.29) correspond to dilatations and special
conformal transformations:

Dilatation f* =ax* , (2.40)
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Special conformal transformation f* =2c.xx* -c#x? . (241)

Here a and ¢* are infinitesimal parameters.

Exercise 2.13. Show that (2.28), (2.29), (2.40) and (2.41) are the only solutions to
(2.39) in four dimensions. Is the same true in three dimensions, in two dimensions?
The conformal Killing equation in d dimensions reads

2
a
Oyt 0fu= —Eudaf*=0 . (E2.10)

The-finite version of these transformation is

Dilatation x# —»>x'* =e%x* . (2.42)

. | . ' xk + chx?
Special conformal transformation x* -»x* =

2.43
1+ 2cex+c?x? ( )

One readily verifies that if the A4 ,’s are transformed by the rule (2.26) or
(2.36), the Lagrangian changes as in (2.3 1) and Noether’s theorem, combined
with (2.36), again yields the Bessel-Hagen conserved current (2.34).

Exercise 2.14. Show that &, Ly = a“n}‘, n}‘= ¥ %y when f* isa conformal
Killing vector. Hint: use (E2.8) and (2.8b). From Noether’s theorem derive the
conserved current (2.34). Are the two- and three-dimensional Yang-Mills theories
conformally invariant? If not, can one modify the transformation law for the vector
potential, Eq. (2.26) or (2.36), to make the lower-dimensional theories conformally
invariant? Examine separately the non-Abelian and Abelian models.

The transformations (2.40) and (2.41), or in finite form (2.42) and
(2.43), together with the Poincaré transformations (2.28) and (2.29) form
the fifteen-parameter four-dimensional conformal group, SO(4, 2), and the
classical four-dimensional Yang-Mills theory is invariant against this large
group of symmetry operations. A related fact is that the only parameter
of the classical theory, the coupling constant g, is dimensionless, in units
where hand the velocity of light are dimensioniess.

Exercise 2.15. By expanding the finite special conformal transformation (2.43)
for large ¢, show that up to terms of ()(c'2 ) it can be viewed a3 the following sequence
of transformations: translation, improper Lorentz transformation, dilatation and
coordinate inversion

xM o x™ = b (E2.11)
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This transformation cannot be constructed in infinitesimal form: but any conformally
invariant theory is also inversion invariant. Show further that any finite special
conformal transformation may be written as an inversion, followed by a translation,
and then followed by another inversion.

Exercise 2.16. Show that the Lie bracket (E2.6) of two conformal Killing vectors
is again a conformal Killing vector. Verify that Lie bracketing the various infinitesimal
transformations of the conformal group reproduces the Lie algebra of the conformal
groups; seeref [6] for the structure of this algebra.

The classical conformal symmetry cannot be maintained in the quantized
version of the theory. Operationally this means that the renormalized energy -
momentum tensor possesses a non-vanishing trace and there are anomalies
in the dilatation and conformal currents: rather than the vanishing of (2.38),
we get [10]

3 it = Lo fo04 (2.44)

since -} a, f% is nonzero for conformal Killing vectors, we see that the non-
vanishing trace of 8“" spoils the conformal symmetry.

The study of this anomalous breaking of conformal symmetry is of
enormous practical significance in application to high-energy particle physics.
If the symmetry were not broken, it is difficult to see how the theory could
avoid being trivial, since it is unlikely that non-trivial scattering amplitudes
can be constructed with only one dimensionless parameter. The anomalous
response of a theory to conformal, more specifically scale, transformations,
is the subject of the renormalization group [11], but neither this nor the
trace anomalies involve any topological ideas, except when coupling to
gravity is included. In flat space, the anomalous trace of the energy-
momentum tensor is proportional to the Lagrangian, where the proportionality
is established with the help of the renormalization group Gell-Mann-Low
function [12]. Only in curved space do topologically interesting structures
contribute to 84 [13]. |

I shall, therefore, not elaborate on the subject of trace anomalies any
further, beyond observing that this anomalous symmetry breaking is not
unexpected in a quantum field theory. Conformal symmetry requires that
there be no dimensional parameters. But a renormalization procedure neces-
sarily introduces a dimensional quantity: the scale at which the theory is
renormalized, and this breaks the scale symmetry and hence the conformal
symmetry. More technically, field theoretical calculations must be regularized
to avoid infinities and regularization is effected by introducing dimensional,
conformal symmetry violating cutoff parameters, or by analytic continuation



230 R.JACKIW

of the dimensionality of space-time, which also violates conformal symmetry,
since the trace of Gpv vanishes only in four dimensions.

In subsequent lectures, I shall discuss anomalies in great detail, in examples
involving fermionic axial vector currents. These anomalies possess topolo-
gically non-trivial characteristics [14].

2.3 Couplings to Matter Fields

The pure Yang-Mills theory contains only vector gauge potentials. It
is of interest to introduce couplings to other fields, the so-called matter
fields. We consider multiplets of real scalar fields ¢,, and spinor field ¥,
which are ‘taken to transform under a rigid (global) gauge transformation
according to some definite representation of the Yang-Mills invariance group,

8¢, =—70,20%,  8y,=-15 0%y,  0°constant
(2.45)

Here the 7%’s are representation matrices for the Lie algebra; they need
not coincide with the T? representation matrices used earlier, nor need
they be the same far the scalar and spinor fields, although they still satisfy
the commutation relation (2.2).

[72,7°] = fpe 7€ . (2.46)

For example, the scalar fields may transform according to the SU(V) adjoint
representation,

a

Tnn' = fnan' ’ (2473)

and the spinor fields according to the fundamental SU(NV) representation,
% = 0%/2i for SU(2) , 74 =2\%/2i for SU(3) , etc. (2.47b)
We then define a gauge covariant derivative of the matter fields by
(D0 = 8 + 8400 80
(D, V) =0,9nt 8ALTn Ve > (2.48)

and one readily verifies that the covariant derivative responds covariantly to
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a local gauge transfdnﬂation,

(D, =—Tom0%(D, O

(D2 V) =—Tum0 (D2 V) - (2.49)

Again a uniform matrix formalism may be used. In the notation that
the matter multiplet (scalar or spinor) is a column vector in internal symmetry
space, the covariant derivative is a matrix operator

Dy=0,%tH, , (2-503)

where the matrix potential &/ u is now defined in the same representation as
the matter field,

oA, = gA T . (2.50b)

The matter fields transform under a finite gauge transformation %, appro-
priate to their representation, according to the inverse rule,

U =e™0" = [+ 7999+ .

oY = Uy , Y>YY = w4ty (2.51)

while the vector potential matrix in this representation, 1 transforms as
in Eq. (2.17); see Exercise 2.1.

Sy, > Ay = a1 dﬂl + -1 apﬂll i (2.52)
Consequently the transformation law for the gauge covariant derivative is
= U WY 4 U
@“¢_ap¢+ d“¢—>a“¢ +*ﬁ“¢
= Y! @“xp : (2.53a)
and similarly for the Fermi fields.
— & U b
Db =3, ¥+ L, Y>3,y + ALV

=4t Dy . (2.53b)
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Exercise 2.17. Prove that

(D Dyl oo = Fyye s Fy=0, A=, o, + . o,] . (E212)

The kinetic part of a gauge invariant matter Lagrangian for Dirac spinor
and scalar fields is

Ly =ihir* D, ¥ + (D) 2*9) (2.54)
IM = Idx ’ZM , ' (2.54)

where I am using familiar Dirac theory quantities.

=9ty |, {yH Ly =2gR R =40(yH) 0 =

(2.55)

It is seen that local gauge invariance completely fixes the gauge potential
— matter coupling. Of course there may also be further, pure matter,

contributions to the Lagrangian, like a fermion mass term 7y, boson mass
term %uztbz, fermion-boson Yukawa couplings, and boson self-couplings

governed by a potential V' (¢). Provided these are invariant against rigid
gauge transformations, local gauge invariance places no further constraints,
and the parameters (masses, coupling constants) are arbitrary. But precisely
because of their arbitrariness, they are unattractive to the theorist seeking
a- fundamental theory where everything is determined. Consequently, we
shall not pay very much attention to these possible terms. (One can also
construct locally gauge invariant matter-gauge field interaction with an
arbitrary coupling constant, e.g. Y7% " \[JFfw with o#¥ = (1/2i) [v* ,~"].
This would not be renormalizable in four dimensions. Such interactions are
called non-minimal and I shall not consider them.)
The field equation now becomes

81y
(D, F*")* =~ =g, (2.56)

a
14

where the matter current J¥ for the Lagrangian (2.54) is

J4 =—ingy 18y — (D4 ¢)r%e . (2.57)
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Note that with the definition (2.56) the current contains a factor of h,
because the fermion Lagrangian does. Similarly fermion Noether symmetry
currents have an h coefficient, since the canonical momentum is proportional
to h. In addition to (2.56), there are also the matter field equations.

81 - 61
M M
—_ =0 , — =0 . (2.58)
oy 6¢
In our example the fermion interactions are parity conserving and the
current J ‘; is a vector. One may also deal with parity non-conserving inter-
actions involving 7ys and axial vector currents. The 7ys matrix is defined

only in even dimensions, hence we consider two and four dimensions. (Three-
dimensional fermions will be discussed in the last section.)

1
two dimensions: 7y, = 2— €ap Cyf=iy0yl
. . l a. B 0.1,.2.3
four dimensions: v, ———-7'- €apys ¥ Y YT y% = yOyiy?y3
Ts =75 (vs)=-1 . (2.59)

In an even-dimensional non-Abelian theory a pure axial vector interaction
with Dirac fermions would not be gauge invariant, but either of the two
combinations iy y* %(l tiys )4 l[JAﬁ is an allowed interaction. The
chiral combinations 3 (1 2i7vs) are projection operators, so the above may
also be written in terms of Weyl spinors.

=-(l£iv)y iys v, =2y, ; - (2.60a)
J/-i \l/ (l+175) ’ _‘Tlii')'s =i$¢ ; (260b)
y=y, + v (2.60c)

Since ¥, Y* V. vanishes, we see that only one projection couples:

UrH (3, +5(1tivs)e ) ¥ = U7 (B, + LV, + U yH0u s
(2.61)
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To preserve local gauge invariance, the right-handed spinor (+) must transform
according to %~! and the left-handed spinor (-) is a singlet, or vice versa.
Also, there must be no -couplings between right- and left-handed spinors;
in particular there can be no fermion mass term: ‘7’: Y, = 0. In other words,
the gauge group transformation (2.51) is defined separately for the right-
handed Weyl spinors and for the left-handed Weyl spinors. Frequently one
deletes spinors of one chirality entirely from the theory, and deals with massless
Weyl spinors of definite chirality (handedness). Alternatively both may be
present, transforming according to different representations of the gauge
group. [If both transform by the same representation matrix, the vector
theory (2.54) is regained.] Of course the field equations remain as in (2.56)
and (2.58), with the current J* appropriately modified.

In an Abelian theory, a pure s vector coupling is allowed, but the fermions
must be massless. This can be called axial spinar electrodynamics.

The matter current in a gauge theory satisfies an important constraint:
it must be covariantly conserved. This follows when we differentiate
covariantly the Yang-Mills equation (2.56). In matrix notation we find

D,gJ*=D,D,F* = 1+[D,D, ~D,D,] F** = ;[F,,, F*'] =0
(2.62)

Indeed, in a gauge invariant theory the field equations (2.58) and the
current definition (2.56) will imply covariant conservation of J*. How-
ever, once again I must remind you that all these manipulations are formal;
they are valid on the classical level but must be re-examined in the quantum
theory. As we shall see later, there are instances, involving chiral couplings,
when the source current J* possesses an anomalous, non-vanishing divergence.
In that case there are obstacles to constructing the quantum gauge theory,
which we do not know how to overcome, even though classically there-is no
evidence for the problem. So the absence of anomalies in source currents
is an important constraint on building quantum gauge field theory models.

Exercise 2.18. With the matter Lagrangian as in (2.54), show that the field equations
(2.58) imply the covariant conservation of the current (2.57). Show also that
D“ J* = 0 is equivalent to the statement that the matter action is invariant against
infinitesimal gauge transformations. Hint: recall the definition of J* in (2.56).

Exercise 2.19. The combined Yang-Mills matter Lagrangian is invariant under rigid
gauge transformations. Using Noether’s theorem, derive the conserved symmetry
current jf‘:. Show that in addition to its pure gauge field part (2.23) it now acquires
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a matter contribution given by Jg. Show that the ordinary conservation of j#is
equivalent to the covariant conservation of J g and the gauge field equation (2.56).
Finally, show that the ordinary divergence of Fg" is given by j g; hence the conser-
vation of the latter is also required by the anti-symmetry of the field tensor.

Of course the interaction with matter preserves Poincaré invariance and
this symmetry is maintained in the quantum theory for all cases of interest.
(In two dimensions, with chiral couplings a conserved gauge invariant and
local energy-momentum tensor cannot be constructed in the quantum
theory; also the quantized model is beset by anomalies in the source current;
more about this later.)

In four dimensions and if there are no dimensional parameters in the matter
Lagrangian (mass terms, cubic scalar field self-couplings), conformal symmetry
holds on the classical level, but just as for pure Yang-Mills, it is anomalously
broken after quantization. The scale and special conformal transformation
rules for four-dimensional scalar and spinor fields are given by '

Dilatation transformation f* = ax*
8f¢=faaa¢+d¢ >

S =f23, ¥+ Fav ; (2.63)

Special conformal transformation f* = 2c¢ -xx* —c*x?

6p ¢ = f"_‘aau+ 2c-x¢
Bfll/ =f°‘aa\l/+(3c-x+icao°‘ﬂxﬂ)\[/ . (2.64)

Note that these are not Lie derivatives; indeed that operator is not defined
for spinor fields. |

Exercise 2.20. Show that the gauge covariant coordinate transformations 5.¢ and
Efw are as above except that the ordinary derivatives are replaced by the appropriate
covariant derivaties.

Exercise 2.21. Verify that the above field transformation rules satisfy the proper
commutation relations (E2.7).

Exercise 2.22. For the above transformations, prove & f-‘z’ M= a“nﬁ M- Note that
when scalar fields are present ﬂ}f M* i E’M. Hence, further improvement of the
energy-momentum tensor is required to arrive at the current 8 Lt [, s seeref. [6].
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Finally let us comment on the role that all the fields which we have
discussed play in physical theories. For strong interactions, one believes
that Yang-Mills fields provide the ‘““glue” that binds the quarks, described
by Dirac spinor fields, in the hadrons. No observed particles are associated
with elementary excitations of the gauge or Dirac fields [15]. These
excitations are thought to be confined — a speculation which is well supported
by various plausible arguments and approximate calculations, but no convinc-
ing proof has yet been given. For weak and electromagnetic interactions
the vector potentials correspond to observed immediate vector bosons
(W, Z) and photons that mediate these forces between quarks and leptons,
which again are described by spinor fields coupling in chiral fashion to the
gauge fields [16]. The W and Z are massive, yet local gauge invariance
prohibits a conventional vector meson mass term in the Lagrangian — as
mentioned earlier, M 2Aﬁ AR is not gauge invariant. In order to circumvent
this problem, model builders [17] have invoked the mechanism of sponta-
neous gauge symmetry breaking. One would like to see this breaking occur
for dynamical reasons in a theory involving just gauge potentials and massless
spinor fields, so that only one parameter — the gauge coupling constant —
characterizes the theory. Unfortunately, no realistic and convincing model
has been constructed in which this attractive speculation can be plausibly
supported [18].

Failing at this, one arranges for the spontaneous breaking by introducing
scalar fields whose gauge-invariant self-couplings are so chosen that the
lower energy configuration is indeed non-symmetric; i.e., one uses the
Goldstone-Higgs mechanism [17]. While there are many unattractive aspects
to this procedure — the first being its ad hoc nature — it is phenomenologi-
cally successful [19], and this is where the subject stands today.

2.4 Classical Gauge Fields

While our aim is to discuss the quantized Yang-Mills theory, let us pause
for a moment and examine the dynamical field equations in their classical
setting. After all, the Maxwell theory, which is the antecedent and inspiration
for Yang-Mills theory, was thoroughly investigated within classical physics,
with results that are quite relevant physically even when quantum effects
are ignored. Unfortunately, no such physical success can be claimed here,
though much of mathematical interest has been achieved.

We consider first the sourceless equation in four dimensions,

D,F* =0 . (2.65)



TOPOLOGICAL INVESTIGATIONS OF QUANTIZED GAUGE THEORIES 237

In discussing solutions, it will be uséful to characterize them by their energy,
momentum and angular momentum. These expressions are of course
determined by the energy-momentum tensor (2.33), and take familiar
electromagnetic form in terms of the non-Abelian electric and magnetic fields.

El = F4;
sz =~z ek F T (three spatial dimensions),
B, =— —%e"f F f; (two spatial dimensions). (2.66)

(The discussion will be confined to the theory in three spatial dimensions.)
The energy density is 6 °,

- L(E2+B}) , E-= Idré‘ , (2.67a)
the momentum density is the Poynting vector 8°% |
P=E xB, |, P=jdr9’ , (2.67b)
and the angular momentum density €% x/6°% is given by
M=rx(E,xB), M= Ier{ ) | (2.67c)

The first issue concerns the existence of regular solutions. If regular
initial data is taken, will the solution evolve in a regular fashion, or will
the nonlinearities produce singularities? This question has been answered:
regular solutions to (2.65) do exist, and the same is true if one considers
a larger system: scalar and spinor fields interacting with gauge fields [20].

However, physicists are not so interested in the general solution which
depends on arbitrary initial data, but rather in specific solutions which
reflect some physically interesting situation. For example, in the Maxwell
theory we are interested in plane wave solutions.

Let us note that any Maxwell solution is a solution of the Yang-Mills
equation, when one makes the Ansarz that the space and internal symmetry
degrees of freedom decouple. If one forms Aﬁ (x) = naA“(x) with n?
constant and 4, (x) satisfying the Maxwell equation, then Aﬁ (x) isa solution
to the Yang-Mills equation, which we shall call “Abelian”.

It is interesting to see whether there are plane wave solutions in the
non- Abelian theory, which are not Abelian. By “plane wave”, we shall
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mean a configuration of finite energy denmsity (0 < & < °0), of constant
direction for the Poynting vector [#(x) = 2 | #(x)| with £ constant],
and with magnitude of the Poynting vector equal to the energy density
(12| = & ). Such solutions have been constructed [21], but unlike their
Maxwell analogs, they do not seem to have any physical significance. Certainly,
if gauge quanta are confined, one cannot make a coherent superposition of
them to construct an observable plane wave. Alternatively, one may view the
Maxwell waves as quantum mechanical wave functions for the photon.
However, the non-Abelian plane waves solve a nonlinear equation; they
cannot be superposed to form other solutions, and it is hard to see how they
can be used as wave functions.

Another class of solutions, more appropriate to nonlinear field theories,
are the celebrated solitons, which do have a quantum meaning — they are
the starting point of a semi-classical description of coherently bound quantum
states [22] . A soliton should be a static solutions, have finite energy and be
stable in the sense that small perturbations do not grow exponentially in
time. However, one proves with virial theorems that no such solution exists
in the pure Yang-Mills theory in four, three or two dimensions [23].

Another tack that one can take is that of symmetry. Recall that the
classical Yang-Mills theory in four dimensions possesses conformal SO(4, 2)
symmetry. One may seek solutions invariant under the maximal compact
subgroup, i.e. SO(4)x SO(2). This solution has been constructed [24];
it is called a “meron’. But again no physical significance has been attached
to it, or to its generalization which possesses the smaller compact invariance
symmetry group, SO(4) [25].

There are many other solutions to (2.65) that have been found [26],
and while their discoverers invariably highlight some unique characteristic,
no physical application has been given thus far — although doubtlessly they
are mathematically interesting.

In the above discussion, I have touched on a subject which is worth
elaborating upon. I spoke of the SO(4) x SO(2) invariant meron solution.
But what exactly does one mean by “invariance’ in a gauge theory? Let us
approach this question first by considering a scalar field ¢(x). We say that a
given functional form for ¢ is invariant against translations in the a* direction
if there is no dependence on x *a, or equivalently if a“aucp = 0. Similarly,
¢ is rotationally invariant if it depends only on |7 | and not on angles, i.e.,
if ellkyl dr¢ = 0. In both cases we see that the derivative is a Lie derivative
(2.27) with respect to an infinitesimal coordinate transformation against
which the ¢ field configuration is invariant. Consequently we define an
arbitrary tensor field T, to be invariant against an arbitrary coordinate
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transformation, infinitesimally given by f*, when
LeT - =0 + invariant tensor field. (2.68)

However, for a gauge potential 4, this definition is too restrictive since
we are interested in coordinate invariance of gauge invariant quantities, and
not necessarily of a gauge variant object like the potential. Therefore we
extend (2.68) by saying that a given gauge potential 4 4 1s invariant against
a coordinate transformation not only if the Lie derivative annihilates it, but
more generally if the Lie derivative acting on A4 u produces an infinitesimal
gauge transformation.

L¢A, =D, Wy < invariant gauge potgntial. (2.69a)

(This condition refers to arbitrary gauge potential configurations, not neces-
sarily solutions to Yang-Mills equations.) One may transform (2.69a) by
recalling the earlier result that a Lie derivative of 4, supplemented by a
gauge transformation with gauge function —f*4, equals f*F,; see
Eq. (2.35). Hence an equivalent test for coordinate invariance is

f*F wn =D, P f « invariant gauge field. (2.69b)

This is a gauge covariant test, because it is applied to the gauge covariant
field strength and not to the gauge -variant potential.

Aside from giving a convenient criterion for deciding whether some
gauge field configuration is invariant under coordinate transformations,
the formalism allows for the construction of the most general invariant
gauge fields: given f*, one solves (2.69a) for 4, with Wrarbitrary [27].

Also, these ideas have been used in the following “physical’” ways. Observe
that <I>f in (2.69b) is a gauge covariant Lorentz scalar field. Hence we see
that an invariant gauge field always has some components that involve scalar
fields. If one considers a pure gauge theory in 4 + n dimensions, and dimen-
sionally reduces to four dimensions, by asserting that the potentials are
independent of the n additional dimensions, i.e., that they are invariant
against coordinate transformations in those n directions, then some compo-
nents of the (4 + n)-dimensional F v Survive in four dimensions as scalar
fields. It has been suggested that the scalar fields necessary for spontaneous
symmetry breaking in the Weinberg-Salam model [17] might arise in this
fashion from dimensional reduction of a higher-dimensional pure Yang-
Mills model [28]. However, as with all attempts to replace the ad hoc
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symmetry-breaking procedures based on scalar fields with something more
natural (is dimensional reduction “‘natural’’?), this idea, though promising at
first, has not reproduced all the phenomenologically necessary details. |

Another observation is interesting: the quantity <I)f , defined in (2.69b),
has physical significance. Consider a particle moving freely in space —
there will be constants of motion Cr associated with that motion as a
consequence of the (free) dynamics being invariant against coordinate
transformations f* , e.g. energy and momentum as a consequence of time
and space translation invariance, angular momentum as a consequence of
rotational invariance, etc. Now consider the same particle moving in some
background gauge field. In general, an arbitrary background field will break
the invariance and the constants of motion will disappear. However if the
background is itself invariant, the constants of motion will remain, but their
form will be modified by a contribution from the field: a term proportional
to @, must be added to C,. This explains the frequently noted fact that
particles moving in prescribed gauge fields have unexpected contributions to
their constants of motion [29].

Exercise 2.23. The above remarks apply to an Abelian theory as well. Consider a
charged particle moving non-relativistically in a magnetic monopole field B = grF/r?
according to the Lorentz force law, :
mr =er X B . (E2.13)
Show that the conserved anguiar momentum J has an unexpected contribution
beyond r X mr,
J=rX mr—egr . (E2.14)

Next consider an infinitesimal rotation fi = Tk Tk ( @ is the rotation para-

meter). Compute f'F i with the above magnetic field and show that it is a gradient
of a scalar ®. Compare with (E2.14). (Note: here g is the monopole strength, not
the gauge theory coupling constant.)

Returning now to classical solutions, let us take note of another category
that has been studied: Yang-Mills fields with prescribed external delta-
function sources, i.e., solutions to (2.65) that are singular, with the singularity
giving rise to a delta function which is interpreted as a localized source.
Again all sorts of interesting phenomena have been found, but physical
relévance is obscure, presumably because it is not sensible to approximate
quark sources (which should be confined) by a classical localized source
{30]. I mention briefly some salient results:

(1) The Coulomb potential, being a Maxwell solution, also solves the
Yang-Mills equation with a delta-function point source. However, when
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the source strength exceeds a critical magnitude, the solution becomes
unstable [31].

(2) The same source can produce more than one, gauge non-equivalent,
solution as the source strength is increased beyond a critical value, i.e. there
is a bifurcation phenomenon [32, 33].

(3) Some static solutions are stable, without minimizing the energy.
They are stabilized by gyroscopic forces ana]ogous to those operating in
a spinning top [33, 34].

(4) The Dirac magnetic point monopole, which solves the Abelian theory,
but with a singular vector potential containing “strings’’, may be represented
in a non-Abelian theory by a solution which is regular (aside from the
singularity at the location of the monopole). For example in SU(2) the
following describes a point monopole at the origin [35]:

. 1 2
A =0, 4 = — etir L - (2.70a)
a g ’

The above solves (2.65) and is SU(2) gauge equivalent to

A3 =0, A,,=0, A3 =Ap;,., VXApp,=

Dirac

ﬂlﬂ)
(¥

1
g

(2.70b)
Note that the potential in (2.70a) is not manifestly rotationally symmetric
since it mixes spatial degrees of freedom with internal degrees of freedom
— but it is rotationally symmetric according to the criterion (2.69), as it

should be since a point magnetic monopole is a rotationally symmetric
object.

Exercise 2.24. Find an explicit formula for Apiracs -6, solve the equation
;
V XApirac =8 — - (E2.15)
r2
Hint: Use radial coordinates. Find a gauge transformation that transform (2.70a)

to (2.70b). Verify that A, .. as well as the configuration in(2.70a)arerotationally
invariant in the sense (2.69a). (Note: hereg is the monopole strength, not the gauge
theory coupling constant.)

Example (4) leads to the final and most important category of solutions I
shall mention. Now dynamical sources J* are included and the source
current is given by scalar fields as in (2.57), while the scalar fields satisfy
their own dynamical equation as in (2.58). It has been understood that
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whenever the gauge group is simple and the dynamics of the scalar potential
is such that the symmetry group is spontaneously broken to one with a
U(1) factor, a smooth monopole solution can exist, i.e., the solution (2.70a)
acquires a form factor, which vanishes at the origin and approaches unity
at large distances. Thus the configuration is regular at the origin, but far
away from the origin it still appears as a monopole. Also one finds a smooth,
self-consistent solution for the scalar field. Everything is static; the classical
energy is finite; there is good reason to believe that the solution is stable
— one is speaking of a soliton in three spatial dimensions and consequently
of a true quantum state which is being described semi-classically [36].

Exercise 2.25. Call a(r) the form factor occurring in the monopole- soliton; i.e.,
consider the configuration (2.70a) with a further factor 2(r). Perform the gauge
transformation determined in Exercise 2.24 and establish how (2.70b) is changed.

After the initial discovery of this smooth monopole solution in a SU(2)
gauge theory with scalar field in the adjoint representation breaking the
symmetry to U(1)— the original ’t Hooft-Polyakov monopole [37] —
there has been much study of this curious structure [38]. Multi-monopole
generalizations and monopoles with electric charge — dyons — have been
found. In addition to the obvious mathematical fascination, there is physical
interest as well because current speculative “Grand Unified Theories” (which
one hopes will unify the already unified weak and electromagnetic interactions
with the strong interaction) are precisely of the type that support monopoles.
They are based on a simple group (that is why they are unified ); the symmetry
must break spontaneously (Nature doesn’t exhibit this unity); a U(1)
factor must survive (electromagnetism exists). Interest was further spurred
by the reported observation of a monopole [39].

Nevertheless no definite physical role has yet been found for monopoles
and dyons in our present understanding of Nature. Conclusive experimental
evidence for their existence is lacking, and their theoretical implications
are problematical: cosmological models cannot easily accomodate them [40] ;
it appears that monopoles cause proton decay [41], yet the proton appears
to be stable. Thus we do not know at the present time whether Grand
Unified Theory is wrong, or whether its consequences are being improperly
applied, or whether new experiments will bring everything into line. Suffice
it to say, that monopoles remain important, if only in a negative way, by
providing important constraints on model building.

Although particle theory has not yet absorbed the monopole soliton
into a consistent phenomenology, solitons in other branches of physics
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have led to important new insights, especially in lower-dimensional systems
that are realized in condensed matter, for example vortices in superconductors
and soliton-induced charge fractionization in one-dimensional polymers,
like polyacetylene [42] .

While analysis of the monopole and other (lower dimensional) soliton
solutions uses topological methods, this subject concerns classical field
theory, and I refer you to,the literature for further discussion [38].

There is one more class of solutions, which I shall describe later. . These
do not solve the Yang-Mills equations (2.65) in Minkowski space, but rather
in Euclidean space, and are called instantons (pseudoparticies). In fact
instantons solve the Euclidean self-duality equation

*FHY =+ pHY (2_71)

and then (the Euclidean-space analog of) (2.65) follows by the Bianchi
identity. [In Minkowski space, the proportionality constant in (2.71)
must be +i.] Of all the solutions, the instantons have interested math-
ematicians most; for physicists they give a semi-classical understanding
of some of the topological effects that are present in Yang-Mills theory.
This will be explained in a subsequent lecture.

3. Quantization

I now come to the problem of quantizing our Yang-Mills theory. It is
important to develop this subject carefully, because as we shall see, the
topological subtleties of theory can be uncovered in the quantization process.
Since Yang-Mills theory is gauge invariant, we expect that there will be
complications with a straightforward approach to the canonical formalism,
as there already are in Maxwell theory. It turns out that because of local
gauge invariance, we are dealing with a constrained canonical system, and
therefore I shall first exemplify and solve a constrained quantum mechanical
problem, which we can all understand easily.

3.1 Constrained Quantum Mechanical Example

Consider a two-body mechanical system, governed by a Hamiltonian
for one-dimensional motion.

pi p3
H= + + V(g —q2) - (3.1)
2m1 2m2
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Obviously, the total momentum is a constant of motion, as a consequence
of the translational invariance of the interaction.

;
P=p, +ps , —E[H,P]=o . | (3.2)

It is useful therefore to pass to center-of-mass coordinates, which are also
canonical.

m,q; + myq, m;p, —myp,
Q= » 4=41—q2 , D= (3.3)
m; + my m; + m,

and the Hamiltonian in terms of the new canonical variables reads

P2 p2 P2
H= — + — +V(g) = — +Hoy(p q) ,
M 2 (q) M CM(p q)
1 1 1
M=m1+m2 . _ = — + . (3.4)
M mi m,

It is now clear that H does not depend on Q — that is why P commutes
with it — so H and P can be simultaneously diagonalized. The states are
of the form

eX2y(q) , - (3.5)

1
¥(Q4q) =
J2n
where h X is an eigenvalue of P and y (q) is an eigenfunction of H .

Suppose now that for some reason one is instructed to append to our
theory the requirement that “physical” states have zero total momentum.
One cannot satisfy this requirement by setting the operator P = p; + p,
to zero;, we cannot have p, = —p, since this would violate the commutation
relations satisfied by p; and g;. However, we can enforce the requirement
by demanding that P acting on physical states is zero.

PV =0 . (3.6)

This means that ¥ , = does not depend on the variable conjugate to P —
the same variable which is absent from H — and the general solution to
(3.6) is an arbitrary function depending only on g, ¥ ohys = Vv(q). This
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wavefunction is governed by the Hamiltonian Hgy,, and we can say that the
constraint has been solved.

- The one disadvantage of the procedure is that physical states are no longer
normalizable on the full Hilbert space; clearly the integral f/dQdq(¥*¥ ) ohys
will be infinite since \prhys does not depend on Q. This reflects the phys1ca1
fact that our constraint insures that the probability of the total momentum
vanishing is 1, and correspondingly the probability of finding nonzero total
momentum vanishes. The solution to this difficulty istrivial: donot normalize
with respect to Q. Yet one must guard against a formal contradiction:
consider the expectation value of the canonical P, Q commutator between
physical states,

(physical | [ Q, P] |physical ) = 7 h{physical|physical )

The left-hand side vanishes since P annihilates physical states, while the
right-hand side does not. But the. contradiction disappears when one
remembers that it is illegitimate to take expectation values between non-
normalizable states.

It may however not be clear how to solve the constraints, and one may
wish to use a functional integral involving all the vanables If there were
no constraints, the integral would take the form

2 ’ . i t' [}
(Xj;t | x;5t)= j.@p(r)@qi (1) exp-ﬁ- I drlp;q;,-H] .
t
(3.7)

where the functional integration is over all p;(7) and all ¢;(7) such that
q;(t) = x; and ql-(t') = x;. To enforce the constraint, one must insert a
functional delta function of p;(7)+ p,(r) = P(7). But recall that the
functional integral (without constraints) is derived by breaking up the

time interval ¢ — ¢ into small steps of size Az, and also representing the
propagation kernel (x;; t'x ;> 1) by multiple ordinary integrals,

ot —
<xi,t leyt>

sdil dxy ... (x50 1Dyt — Ar)(py ;' — Arl X, t' —2At)

X (X1t =24t -|x;58) . (3.8)
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To be sure, inserting momentum delta functions will enforce the constraint,
but the x integrals will diverge, since the amplitudes do not depend on the
center-of-mass coordinate. This can be remedied by inserting another
functional delta function in the variable conjugate to the constraint, setting
itto any arbitrary value Q,. Thisislegitimate, since physical, zero-momentum
states do not depend on Q. So the functional integral for the constrained
problem reads

ro e —
(xl-,t |xl-,t)—

i ¢t :
f22im 20:m3(P0(@-00) exo— [ ar1p4- 1]
- ‘ (3.9)
Finally, if it is not clear how to identify the canonical variable Q, we may

use a delta function of an arbitrary function of Q and ¢, provided we recall
the formula

a
5(Q—Qo)=5(f(Q,q))—a—Q— (2q) , (3.10a)
which functionally is promoted to
6 X
5(0(r) = 00) = B(F(Q(r), a(r))) det <224 5 14
6Q(1)

[We assume that f vanishes only at Qy, and (3/3Q)f is non-vanishing and
positive there.] When it is recognized that § f(Q(7), q(7))/86Q(7") is also
the Poisson bracket between the constraint and f, we arrive, heuristically, at
Faddeev’s formula for the functional integral appropriate to a constrained
quantum system [43]:

xi:t'1x0) = (20(1) D405 (py + £2)8(5)

i ¢t :
X det {p1 + p2, f} e"ip_h I drlp;q;,—H]
t
(3.11)
The first delta function enforces the constraint; the second involves an

arbitrary function, hence it is called “a choice of gauge”. The exponent is
recognize to be the classical action, in terms of canonical variables.
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Exercise 3.1. In the above quantum mechanical example the constraint that the total
moment vanish is imposed “by hand”; it did not arise from a gauge principle. One

- may also construct a gauge invariant quantum mechanical example. Consider the
Lagrangian

L=1im (g +ed)?+ ym (g +eA)’ -V (2, —q,) (E3.1)

Show that L isinvariant under the time-dependent transiation 6 ¢;(¢) = a(¢t), provided
the ‘‘gauge potential” A(r) is also transformed. Verify that *“Gauss’ law” (the
equation obtained by varying A) enforces the constraint, and that in the “Weyl
gauge” (A = 0) the dynamical equations reduce to those of the above example.
Show that the Lagrangian (E3.1) may be derived from (3.11), when the constraint
delta function is represented by an exponential integral over 4.

Exercise 3.2. .Show that the Lagrangian describing motion of a point particle in a
plane,

_—:%m(r’i-i-eAeijrj)’—V(r) L i=1,2 (E3.2)

is gauge invariant against time-dependent rotations, sri= ey w (1), provided the
“gauge potential” A is gauge transformed. Verify that “Gauss’ law” enforces the
vanishing of the angular momentum. What are the dynamical equations in the
“Weyl gauge”? Solve the constraint and derive the unconstrained Hamiltonian.

3.2 Quantizing a Yang-Mills Theory

Let us now turn to the Yang-Mills theory, which is governed by the
Lagrangian £, . (Since a gauge theory is trivial in two dimensions, we
take the dimensionality to be three or greater. We shall use a notation
appropriate to the four-dimensional theory, but an identical development
can be given in any number of dimensions, with the modification that the
magnetic field is not a space vector, but an anti-symmetric tensor, except
in two spatial dimensions, where it is a scalar.)

1 2 _.p2
gYM = ?(Ea Ba) >
E,=—4, - VAg - gfabcAgAc ’
B,= V,xA,~ 58 pcApx 4, . (3.12)

Our task is to build a Hamiltonian scheme, which will give rise to the Yang-
Mills equations. These I record one again in non-covariant form. The time
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component of (2.16a) — the non- Abelian Gauss’ law — reads
(D-E), =0 , | (3.13)
and the space component — the non- Abelian Ainpére law — is
(D°E),=(DXB), . (3.14)

(In the space vector notation, the covariant derivative D has components
D;.)

The first problem that is encountered in passing to a Hamiltonian descrip-
tion arises from the fact that &, does not depend on Ag; thus there is
no momentum conjugate to 4 2. To remedy this, we use our gauge freedom
to set Ag to zero. This choice of gauge is called the “Weyl gauge’ because
Weyl publicized its use it in electrodynamics [44]. Then (3.12)-(3.14)
reduce to

Py =2(4;-BY) , E;=-4, ,

B,= VxA,— >8fpcApx A, , (3.15)
and

(D-E),=0 |, (3.16)

E,=(DXB), . (3.17)
Now the Lagrangian lends itself to a canonical transcription intqzi Hamiltonian.
The dynamical variable is 4,, its canonical momentum is 4, = —E,, and
the Hamiltonian becomes

_ 1 2, g2
H= > dr(E, + B;) _ (3.18)

which is also the total energy; see (2.67a). The non-vanishing canonical
equal time commutator

[EL (r), A} (r)) = ih8,, 67 8(r-+") (3.19)
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implies
: i
Ag= —H A1 =L | (3.20a)
. i
E,~ —[HE,] =(Dx B), , (3.20b)

and we see that the Hamiltonian equations reproduce Ampere’s law (3.17)
and the definition E, in terms of A,. However, Gauss’ law (3.16) has as
yet not emerged, because it is a fixed-time constraint between canonical
variables. (Since we are developing a fixed-time Schrédinger picture for
the quantum field theory, the time argument of the operators is suppressed.)

Let us for the moment ignore the absence of Gauss’ law, and observe
that we have arrived at a completely consistent quantum field which,
however, does not yet coincide with the Lorentz-invariant Yang-Milils theory,
since we do not have Gauss’ law. Certainly we cannot simply set (D« E),
to zero; this operator does not commute with the canonical variables.

We observe that the Lagrangian (3.15) possesses a. Noether symmetry
in which 4, changes infinitesimally according to

1
54, =~ — (DB), |, (3.21)
g

where 82 is a c-number, space dependent but time independent, function.
Of course this is recognized as the residual local gauge invariance in the
Weyl gauge: A = 0 is preserved by time-independent gauge transformations.
But now we view it as an ordinary continuous symmetry, and Noether’s
theorem gives the conserved charge:

| 1
0, = -‘.dr M,-54,= —j drE, - (D), . (3.22)
4

Since 02 is arbitrary, we also know that (1/g) fdr(D-E), 8% is conserved,
and so also is (D - E),; a fact which may be verified by an explicit com-
mutation with H. Note that (D -E), is not zero, since Gauss’ law is not
one of our operator equations. Thus we recognize that (D * E), is the time-
dependent generator of infinitesimal time-independent gauge transformations,
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with the space-dependent c-number parameter 8¢ stripped away; we call it
G

a°

1
g
It satisfies the following commutation relations:

' 1
Lh[Ga(")sAb(”)] - ?aabV6("‘")+f;zbcAc(r)a(r'—r’)_ ’

— (6o, Ey ("] = Fype B (1) (r=r) . (3.24)

These show that G, does indeed generate infinitesimal gauge transformations.
The Hamiltonian is gauge invariant and G, commutes with it, so G, is time
independent,

i
G, = —E[H, Ga] =0 . (3.25)

a

The commutators of different G, follow the Lie algebra of the gauge group,
;
—1Ga(r), Gy ()] = 3 Ge()8(r 1) . (3.26)

We now see how to impose Gauss’ law: the operator G, is not set to zero;
rather one demands that physical states be annihilated by it.

| G,(r)|physical)=0 . (3.27)
One may consider the states to be realized in a Schrodinger representation

as functionals of 4,. Thus (3.27) becomes a functional differential equation
satisfied by physical state functional ¥ ;. (A),

o)
(o &), vt

o |
=(V5a,b-gf;wac)' —6‘—; ‘pphys(A)=0 . (3.28)
b
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while the Hamiltonian eigenvalue equation reads

h? 8?2 |
Sdr‘—- ;— 5 42 + E-Ba VY(A)=EV¥(A) . (3.29)
Egs. (3.28) and (3.29) correspond to the Yang-Mills quantum field theory,
where only those solutions of the latter which also satisfy the former are
physical. Equation (3.26) shows that the constraints close on commutation;
hence (3.28) is integrable, at least locaily.

We shall still need to examine the gauge transformation properties of
our theory more closely, but let us postpone this and first discuss the constraint
(3.28). The conservation of G,, ie., the fact that it commutes with H,
means that H does not depend on certain combinations of the dynamical
variables A,. Correspondingly the constraint G, ¥, (A4) = O forces the
state functional to be independent of these quantities. As a consequence,
the physical states are not normalizable, and one should guard against contra-
dictory statements that would arise if expectation values of the commutators
in (3.24) are taken between physical states. '

One may proceed by solving the constraint (3.28), i.e., by finding the
most general functional satisfying Gauss’ law, and then deriving the effective
Schrodinger equation for the unconstrained functional. For the Abelian
theory this is trivial to do, since one can immediately identify the variable
conjugate to V - E;it is essentially the longitudinal component of A. Hence
taking the wave functional to depend only on the transverse, but not on the
longitudinal, components of A4 solves the constraint. This is equivalent to
setting V * A to zero, and the conventional electrodynamic Coulomb gauge
emerges naturally with our approach to the Maxwell theory. Details are
in the Exercises.

Exercise 3.3. Show that the most general solution to the Abelian version (3.28)

in three spatial dimensions is a functional that depends on the transverse components

of A, but not on the longitudinal ones. Show that a solution to the Abelian version
of (3.29) is the functional

1 y :
W, (A) = exp [_ o ]drdr’A‘(r) GY(r, r’)A’(r')] : (E3.3)
h

with

. . dk I |
if - i tke(r-r) __
¢Trrmy=visT+op) [— e
(27)

2 e
= - — -6Y-2R'"R"y ., R=r-r' . (E3.4)
m* R
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The singularity at R = O is treated with the principal-value prescription. The energy
eigenvalue

E=n(ar|

is the conventional infinite vacuum energy, hence (E3.3) is the ground state wave
functional. Note that the constraint is automatically satisfied, and that (E3.3) may
also be written as a functional of gauge invariant quantities,

dk )
k , (E3.5)

(2m)?

1 B(r)«-B(r")
v, (A)=exp |- Idrdr'

4n’h tr—r'p

(E3.6)

Observe that ¥, (A4) does not depend on the longitudinal component of A4, hence it
cannot be functionally integrated over all components of A. What is the wave
functional for the one-photon state with momentum p, and what is its energy
eigenvalue? What is the two-photon wave functional?

Exercise 3.4. In the Maxwell theory with an external, static, c-number charge density
p(r), Gauss’ law reads

VeE=p . (E3.7)

Solve the constraint and show that physical states involve an arbitrary functional of
the transverse part of A4, times a phase factor depending on p and on the longitudinal
part of A. Show that in the effective Schrédinger equation for the transverse
functional, the energy eigenvalue includes the Coulomb energy.

For the non-Abelian theory the task is more difficult; in particular
V- A, is not conjugate to V- E, and the Coulomb gauge does not arise
naturally. In fact the constraint has been solved [45], but the effective
Hamiltonian is complicated and does not lend itself to a power series
expansion in g, since 1/g terms are present. One may understand these
inverse powers of the coupling constant by recognizing that the solution
of the constraint treats the non-Abelian gauge group exactly, while in the
limit g = 0 the Yang-Mills theory is no longer invariant under a non- Abelian
group of transformations. Hence, removing the non- Abelian gauge degrees
of freedom exactly, which is what solving the constraint equation amounts
to, prevents one from taking the limit g = 0.

While it would be useful to understand the dynamics of the unconstrained
Hamiltonian, we have not yet succeeded in doing so. Consequently one
remains with the constrained formalism and uses, for example, a path integral
formulation.

Before deriving the functional integral representation of the Yang-Mills
quantum theory, we re-examine the gauge transformations of the-theory.



