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3.3 6 Angle

In addition to the infinitesimal gauge transformations, one may also
perform finite, time-independent gauge transformations, U. These leave
the Lagrangian (3.15) and the Hamiltonian (3.18) invariant, and are
implemented by the unitary operator ;.

A>G 48] =UAU-UT'VU

E->%,E9 =U"EU ,

B~ %, BYl =U"'BU |,

[H, %,]=0 . | (3.30)

Clearly the effect of %, on all states (physical and unphysical) is to gauge
transform the argument, '

G,V (A)=V(AV)=V (U AU-U'VU) . (331)

Since % and H commute, we may choose ¥ (A4) to be an eigenstate of
%, for a given U, with an: eigenvalue which is a phase, since ¥ is unitary:

gU\If(A)ze_igU\If(A) . (3.32)

The question now is whether physical states, i.e., those annihilated by
G, ., are truly invariant against finite gauge transformations or only phase
invariant. Let us observe that no physical principle will be violated if 6,
is nonzero, since the probability density ¥ *(A)¥ (A4) is gauge invariant.

One might suppose that & could be represented by exponentiating
the infinitesimal generator (3.22),

i
G = exp|—
0 exp(th)

with U = ¢® and ©® = 8977, where the exponential operator is defined by
its power series. If this were the case, then 4, would leave physical states
invariant, because G, and hence Q, annihilates them. (An integration by
parts is needed for G, to act on the state; we assume no surface terms arise,
for otherwise certainly %, will not leave the state invariant. A precise
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statement about large-distance behavior of gauge functions will be given
presently.) However, it is easy to see that in three-dimensional space there
are finite gauge transformations that are not obtained by operating with the
exponential operator.

Consider the following quantity, defined in three-space:

-1 o (1 1
W(4)= ————Idre”k tr (——A'a,.A" - — A’A’Ak)
47 2 3

__ 1 ik 2
= 16W2Idre’ e (Fyde - — 44, ) (3.33)

I shall show that W(A) is not gauge invariant, yet is is invariant against
gauge transformations implemented by exp(iQg/h). Observe that W(A)
has the property that

2
SW(‘?) -t B . (3.34)
SAL 8m?
Consequently
iQ ,/n -iQ,/n
eQO W(A)e oL

= W(A)+i—h[Qo,W(A)]+...

g2

87

= W+ [ar — [0, 4,00 - T B+ ..

g A
= W) - — [ar(Do), B, +...
= + = \are (D-B), +
= W(A) P r a( ), t--.

= w(4) , (3.35)
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since the Bianchi identity states that the covariant divergence of B is zero.
(In order to drop surface terms, we have assumed that 62 goes to a constant
at spatial infinity and the B falls faster than 1/r2, i.e, there are no magnetic
monopoles; see also below.) Thus W(A) is gauge invariant against gauge
transformations implemented by the exponential operator exp(iQ, /h).

The gauge transformation of W( A) may also be computed directly:

Gy W(A)g; =w(4Y)

1 "
=W(A)- —; jdre”k 3; m(3;UU" 4%)
8
1 " _ ] _
t Idre”k tr (U™ ,UU ™" 3;UU " 3, U) . (3.36)

To evaluate the gauge change in W(A), we mustimpose a boundary condition
on U so that integrals in (3.36) not diverge. We shall assume that U tends
to a constant matrix at spatial infinity, and without loss of generality this
may be taken to be +7. Also A is assumed to fall faster than 1/r. Note that
both these statements are consistent with the earlier requirement that 8¢
approach a constant and B decrease faster than 1/r?. With these, the middle
integral in (3.36) vanishes, but the last remains. It occurs only for a non-
Abelian theory and makes no reference to the potentials since it depends on
only the non- Abelian gauge transformations,

1
2412

w(U)= Idreifk (U™ 3,UU™' 3;UU™" 3, V)

=w(-U"'vU) . | (3.37)

This integration may be performed for a definite U, and one finds a non-
vanishing results; see Exercise 3.5.

However, it is not necessary to perform the explicit evaluation. We
recognize that the gauge functions U, with large-distance asymptotes /,
provide a mapping of the three-sphere S; (which is equivalent to our three-
space once the points at infinity have been identified ) into the gauge group.
Such mappings fall into disjoint homotopy classes, labeled by the integers,
and gauge functions belonging to different classes cannot be deformed
continuously into each other. In particular, only those in the zero class are
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deformable to the identity. This fact is expressed by the mathematical
statement that

I1; (non- Abelian compact gauge group )

= (group of all integers under addition) = % . (3.38)

Furthermore, w(U) is an analytic expression for the integer which labels U’s
homotopy class. It iscalled the “winding number” of the gauge transformation.

Thus we see that W(A) is not gauge invariant against homotopically non-
trivial gauge transformations; rather it changes by U’s winding number.

W(4)->W(AY)=w(4)+ny

ny = w(U) . (-3.39)

We now recognize that &;, may be represented by the exponential only
when U belongs to the trivial homotopy class and is deformable to the
identity. (For these 8¢ vanishes at r = «.) Correspondingly physical states
are gauge invariant against these gauge transformations. But homotopically
non-trivial gauge transformations that are not deformable to the identity
are not implemented by the exponential operator, and physical states are
only phase invariant. If ¢, is the unitary operator that implements a repre-
sentative gauge transformation U, belonging to the nth homotopy class, then
we have

@, |physical) = e 79 | physical)

ig,/n
%, = e o'" _ I
on physical states.

gn gm = gm-m - ’ (340)

[It should be clear that 8 in (3.40) is distinct from the gauge parameter
8%.] The topologically non-trivial gauge transformations are called “large”,
while the trivial ones are called “small.”

This is the origin of the famous vacuum angle in gauge theories [46, 47] ;
we see that its presence is established without any approximation but rather
by carefully following the response of a non- Abelian gauge theory (in four-
dimensional space-time) to the large gauge transformations which are topo-
logically richer than anything in electrodynamics [46]. We emphasize that
in two spatial dimensions, all gauge transformations are small. .
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Exercise 3.5 . Consider the SU(2) gauge group, and evaluate (3.37) with
ara
=TT T8 24820 . " (E3.8)
Show that the integrand in (3.37) may be written as a total divergence, so that the

volume 1ntegral for w(U) may be recast as an integral over the surface at infinity,
provided 69 is regular in the interior.

_ i gk Aa. Ab. arc...
w(U)—EzdeG €abc 9 ajo 9 0 (sinjgi—1i01)

a,.a

to1=+/0%°% , §%=0%01 . (E3.9)
Exercise 3.6. For an arbitrary SU(2) gauge transformation parametrized as in (E3.8),

the condition U ——— = [ sets the requirement that {§| ——— 2#n. Thus the
¥ —» oo ¥ —> oo

general formula (E3.9) reduces to

n s s
W)= - — a8 ¥ ey 8%0;0%0, 8¢ (E3.10)
ki

By parametrizing the unit three-vector §¢ as
8! =siny coso 62 =siny sing |, 8° =cosy , (E3.11)

and the surface of the two-sphere at » = e by angles o and g on which y énd ¢
depend, show that

n 27 " 3y 3o dy 3¢
w(U)=— — j. dg j‘ desiny | — — - —— —r0 . (E3.12)
4n Jg 0 da o8 38  da

The quantity in parentheses is the Jacobian, apart from sign, of the transformation
from (o, B) to (¥, ¢). Hence the above integral is the integer that counts the (signed)
number of times (y, ¢) range over their two-sphere as (a, ﬂ) range over theirs.
This shows quite generally, that w(U) is an integer.

Verify the above analysis by considering the gauge function

=), fO)=0 |, f(=) = 2nn . (E3.13)

Evaluate (3.37), (E3.9) and (E3.12). (It is important to appreciate that here one
is not compactifying R, to S;. Even though the points at infinity can be identified
as far as the gauge function U is concerned — by hypothesis U/ tends to a uniform
angle-independent limit — the Lie-algebra valued quantity ® does not possess a
uniform limit; ® ——— —i o‘-rvrn Thus with the asymptote (E3.13), the Lie-

y—> oo
algebra cannot be defined on a compact manifold, and this is why a total derivative
expression for the integrand w(U) can be given. On a compact manifold no such
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formula is available. The generalization of (E3.9) to an arbitrary group on R, is
given inref. [48])).

Exercise 3.7. Prove that exp[+(82* /hg?) W(A)] solves the non-Abelian functional
Schrddinger equation (3.29) with zero eigenvalue. Regrettably this remarkable
solution diverges for large A4 and does not seem to have physical meaning [49].

3.4 Functional Integral Formulation

The Yang-Mills quantum theory can be transcribed into a functional
integral formulation, which has the advantage of exhibiting the vacuum
angle in an unambiguously gauge- and Lorentz-invariant fashion. In order
to derive the functional integral, we prefer to work with states which are
invariant even against large gauge transformations. Thus we inquire whether
we can modify our physical wave functionals so that they are gauge invariant.
This is easy to do. Recall from Eq. (3.39) that W(A4) shifts by n under a
gauge transformation in homotopy class n. Hence

d = eiW(A )6 N

ohys (3.41)

continues to be annihilated by G,, and is also gauge invariant against all
gauge transformations, large and small. However, ® satisfies a Schrédinger
equation more complicated than (3.29), which follows from (3.34) and

(3.41).

1 h & hf g* 2 1
forl= (== - == 8,) + —B|® -k
2 \i 84, 8x2 ° y

(3.42)

The path integral for this Hamiltonian is given by analogy with the
constrained quantum mechanical system; see (3.11).

Z =j@5a DA, 8(G,)8(xp)det {G,, Xy}

—i ‘ 1 hog* \* 1 |
XexpT dx Ea'Aa+ -E Ea+ o B + —B
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Here x; is an arbitrary gauge choice, taken to depend on A,. Since G,

generates gauge transformations, the Poisson bracket is just an mflnlte31mal
gauge transformation of x;, with “parameter” 6“ stripped off; we represent
it by 8,X,- The constraint delta function may be written s a (functional )

phase mtegral with an integration variable which we call A Thus (3.43a)
becomes

- —i
Z= I@-Aa DE,8(xp)det(5, x; Jexp Y

X Idx E,-A,-A%(D-E),

1
+ T(Ea+ Py B,

(3.43b)

Next the Gaussian E, integral is performed, leaving an expression that may be
written in invariant notation.

i
Z =S@Az 6 (xp)det(8, xp )exp Y Idx.ff,

]
= — ttF¥F, -
282 S 1Y

, tr*FEYF (3.43¢)

Note that even though in our derivation the gauge condition x depends only
on A, the result holds for arbitrary x; hence we may allow x to depend also
on A° provided the determinant is correspondingly adjusted [50].

Aside from the familiar gauge fixing delta function and gauge compensating
determinant, we have arrived at the functional integral formulated in terms
of the gauge- and Lorentz-invariant Yang-Mills action, but with an additional
term contributing to the Lagrangian as a consequence of the angle 6. This
gauge invariant term does not contribute to the equations of motion because
it is a total divergence (of a gauge variant quantity).

— K - (3.44
_tr*FRYF, =3, 68 (3:442)

167
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@* = — chaBy tr(Fogd., - %AaAﬁAy) (3.44b)

1672

Also it does not contribute to the energy-momentum tensor; 8*” in (2.33)
remains conserved. However, tr *F#Y F .. does affect the canonical formalism
because it depends on time derivatives of the canonical variables. Observe
that W(A) is given by the spatial integral of ¥°, with the time dependence
suppressed,

W(A)= Idr%’"(A) . (3.45)

Exercise 3.8. Derive the energy-momentum tensor (2.33) for the Lagrangian in
(3.43¢) by using Noether’s theorem and an appropriate improvement.

The form of the @ term in the Lagrangian shows that 8 is Lorentz and
gauge invariant. However, since tr *F*” F v 18 odd under P and T reflection
symmetries, the 8 term is P and T [or CP] violating. Moreover, we see now
that an independent argument for the existence of a @-parameter in four-
dimensional Yang-Mills theory is the fact that tr *F#” F, , could have been
added to the original Lagrangian without affecting classical dynamics, which
is entirely determined by equations of motion. However, such a term modifies
quantum dynamics which depends on the Lagrangian and on the action, as is
seen, for example, from the functional integral formulation.

Exercise 3.9. Starting with the Lagrangian of (3.43c) in the Weyl gauge (A° = 0)
show that the Hamiltonian is conventional,

1
H= -—Z—Idr(E;+BZ) : (E3.14)

Derive the canonical form for the Hamiltonian in terms of canonical variables and
compare with (3.42).

The conclusion therefore is that a four-dimensional Yang-Mills quantum
theory is characterized not only by its coupling constant g, but also by ahidden
parameter 6, which enters on the quantum level and involves tr*F*” F v
(This effect does not occur in three space-time dimensions, but we shall
see later that there too an unexpected parameter characterizes the Yang-
Mills theory.)

The novel additionto the action has a well-established place in mathematics:
P=—(1/1672) tr *FHY F,, is called the “Pontryagin density”” and ¢H —
the vector whose divergence equals the Pontryagin density — is the “Chern-
Simons secondary characteristic class”.
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For well -defined classical pdtentials, the Pontryagin index

q= Idx.@ ' (346)

is a topological invariant; it does not change under local variations of the
potentials. '

1
e uv
bg==-—= Idxtr*F 5F,,

1
i dxtr*F**D 64, = 0 - . (3.47)

No surface terms arise in the integration by parts, which together with the
Bianchi identity is needed to pass from the second to the third equalities,
since 8 A4, is arbitrary, and therefore may be taken to be localized. According
to (3.44) q is given by the large-distance properties of the gauge potential
— another hallmark of a topological quantity.

q= IdS“ . (3.48)

If we consider gauge potentials that tend to a pure gauge at large distances
in all four directions,

A, —U"3,U . (3.49a)

X — oo

then g may be represented in terms of U, by substituting into the expression
(3.44b) for €* the asymptotic form of 4 o (3.49).

1
2472

q= IdSue““htr(U'laaUU'laﬁUU'la7U). (3.49b)

Finally, note also that g is a geometrical invariant; even in curved space-
time no factors of the metric are. needed to make (3.46) a world scalar
[51]. |

These topological remarks apply to well-behaved classical potentials
which are all that mathematicians are concerned with. They are not directly
relevant to quantum operator fields, nor to functional integrals, where the
integration ranges over irregular field configurations. Most frequently the
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the Pontryagin index is used for classical potentials defined on Euclidean
four-space, and we shall meet it again when we discuss the semi-classical
picture for the @-angle. However, even on spaces with Minkowski signature
g plays a role; for non- Abelian gauge fields that describe a ’t Hooft-Polyakov
monopole, g coincides with the monopole strength [52].

In Euclidean space g is an integer for regular potentials. This is seen
by compactifying R4 to S4, and recognizing that the limit (3.49a) defines
a gauge function U on Sj, the boundary of S;. Again because II; (gauge
group) =%, the U’s fall into integer-labeled homotopy classes and (3.49b)
is an analytic expression for the winding number. Alternatively, one may
work on R, (or even in Minkowski space) and present the limit (3.49a)
in the following way.

Assume that in three directions, 4, goes rapidly to zero, faster than
1/r, where r is the modulus of the three vector. In the fourth direction
(time or Euclidean time ) at negative infinity take A, to vanish, but at positive
infinity to tend to a pure gauge. From (3.44) and (3.46) we have

q=j dx°jdraof€°+j dx°jdrV-(€ : (3.50a)

The last term is converted to a three-surface integral and may be dropped;
the x° integration in the remaining integral is trivial to perform, with the
contribution from negative infinity vanishing. Thus

q= jdr‘€° oo - (3.50b)

However, as already noted in (3.45), the integral (3.50b) coincides with
W(A), hence at x® = oo it is the winding number of the gauge transformation
to which A4 tends.

The above discussion of the Pontryagin density is restricted to four-
dimensional space-time, which is where the 6-angle of Yang-Mills theory
appears. However, as a topological/mathematical object it can be defined
in any even-dimensional space, and always it is a divergence of a vectorial
Chern-Simons secondary characteristic. For example, in two dimensions,
for an Abelian gauge theory,

P, = ——¥F = o MV B — —— ghVy
2 2m 41reF ’ ¢
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while in six dimensions

i
38473

10}6 eaﬁ75€¢ trFaﬁF78Fe¢ 3

@k eHOPYOE tr (FopF g A, —FogA Ag A,

1927°

+2A4,4,4,454) . (352)

We shall discuss some physical consequences of the two-dimensional Pontryain
density below, while the six-dimensional quantities will appear in our
discussion of chiral anomalies.

3.5 Semi-Classical Picture for the Vacuum Angle

The emergence of a phase in the response of a physical state to a finite
symmetry transformation is reminiscent of the quantum mechanical Bloch
momentum associated with the wave function of a particle in a periodic
potential ¥ (g), of the type pictured in Fig. 1. Even though the Hamiltonian
H=p*2m + V(q)is invariant under the shift g - g + a4, the wave function
acquires a phase: ¥ (g + a) = e y(q), where 8 is proportional to the Bloch
momentum. Moreover, even though the classical zero-energy configuration
is infinitely degenerate (q(") =na; n=0,%1,%2,...), quantum mechanical
tunnelling between classical minima lifts the degeneracy and produces a
band spectrum E(6 ). This is the physical situation in a crystal.

bvg)=Vig+a)

\ / :./\t\,/\fg_q

~2a —a

tunelling path (instanton)

Fig. 1. Periodic potential whose quantum mechanics is analogous to the quantized Yang-
Mills theory, with its gauge freedom with respect to infinitesimal gauge transformations
removed. Zero-energy configurations g n an,n=0, £1,£2,...,areanalogous to
A n) = _ U, ! VU, and shifting by g is analogous to gauge transforming by U/;. Tunneling
is discovered by finding an imaginary-time classical solution (instanton) that follows the
tuneling path.
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For our gauge field theory, we recognize that gauge transforming by a
gauge function U,, belonging to the first homotopy class, is analogous
to shifting by a, and the analog of the infinite number of classical zero-
energy configurations are the pure gauge potentials,

AM =-y-tvu (3.53)

for which E and B are zero, and hence the energy vanishes. (It is understood
that the gauge freedom associated with homotopically trivial gauge trans-
formations is completely fixed by the imposition of Gauss’ law.) |
How can we recognize if there is tunnelling in the gauge theory, which
would close the analogy with the crystal and produce a band spectrum?
It is well known to chemists and condensed-matter physicists that semi-
classical evidence for tunnelling is obtained by solving the classical equations
of motion, not in real time, but in imaginary time 7 = iz, and by finding a
solution which interpolates as 7 passes from =oo to + o between adjacent
classical minima. For the ground state, these should have vanishing (imaginary
time) energy, —é—mc’;z + V(gq) = 0. Moreover, a semi-classical formula
for the tunnelling probability amplitude I'is gotten by dominating the
functional integral, continued to imaginary time, with the (imaginary time)
solution, which these days is called an “instanton’; i.e.,, I'x eI/ where I

is the classical (imaginary time) action / =I dr [—%mq2 + V(q)] evaluate

for the instanton. The zero-energy instanton satisfies g = *(2V (q)/ m)%,
hence

1=r ar2¥(q) = [dq(dr/dq) 27 (q) = faavmr@

and e~ I/M js recognized as the WKB approximation to the (zero-energy)

tunnelling amplitude. (Higher corrections involve computing the quadratic
fluctuations around the instanton and performing a Gaussian functional
integral.) Evidently the action must be finite to get a non-vanishing result
[53]. [Let me emphasize that in the exact functional integral, one integrates
over configurations, not merely solutions, and that finite-action solutions
and configurations give a vanishingly small contribution. The infinite-action
configurations are so much more numerous, that even though each one gives
zero for e~!/ h their large number (entropy) ensures a finite answer. It is
only in the semi-classical approximation that finite action solutions are
relevant.]
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These ideas carry over to the Yang-Mills theory [46]. The imaginary

time theory becomes defined in Euclidean space; the imaginary time energy
is -;- J' d’(“'Es + B;); and the Euclidean action becomes

| ihé '
I = j.dx (— 2gztrF‘“’Fw)+ o tr*F“”F“v) . (3.54)

(The topological term retains its factor of i in the continuation to Euclidean
space, since it is a world scalar.) Zero energy is assured if £ = *B or in
covariant notation

¥RV = 2BV (3.55)

As mentioned earlier, solutions to (3.55) automatically satisfy the Euclidean-
space Yang-Mills equation, by virtue of the Bianchi identity.

Since the action must be finite, we may expect the potentials to be
sufficiently regular so that Pontryagin index is an integer, g = N # 0, and the
solution is called |V | instanton solution. The action then becomes

8m? Nt
Iy= ————iNh8 . (3.56)
g
For the physical application we need the smallest action, hence |[N| = 1
and the two cases N = *1 add coherently. Thus the semi-classical tunnelling

amplitude is
I« exp(—8n%/hg?)cosh . (3.57)

(Instantons with |[N| > 2 give exponentially subdominant contributions.)
Also the quadratic fluctuations have been evaluated [54].

Finally, one may represent schematically the ground state wave functional
by analogy with the tight-binding approximation of crystal physics. The
quantum state should be a superposition of wave functionals, ¥ ,(A4), each
peaked in A-function space near the classical zero-energy configuration
-—Un'l VU, . They must be gauge invariant against homotopically trivial
gauge transformations, but the non-trivial ones shift n.

G W =Wy (3.58)
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The ground state band functional then is

V(d)= Y ey (4) , (3.59)

and the band energy (density ) has the form a + Bcos @ [46, 47].

Let me emphasize that the existence of the vacuum angle does not rely
on instantons; it is an exact statement. Instantons provide an approximate
method for calculating the consequences of the angle. This is just as with
the periodic potential in quantum mechanics: Bloch-Floquet theory makes
exact statements, and the tight-binding approximation provides approximate
analysis. |

I shall describe the physical importance of these results when I consider
a more realistic model: Yang-Mills theory coupled to fermions.

Explicit Euclidean-space instantons have been found. For the SU(2)
theory the self-dual one-instanton potential is [55]

—2
A = —074— oMV

o o (3.60)

where the self-dual 2 x 2 matrices a*” are defined by

1 -
ahV = *¥ghV = — (qka’-a’at) | a =(-io, I) ,

at = (a*)' = (ig,I) , (3.61)

and the ensuing field strength is

puv— AT (3.62)
- (RZ + x2)2 ' '

The configurations depend on five parameters: the instanton “size” A, and
four parameters specifying the location, here set at zero. The solution is
invariant against SO(5) rotations [in the sense (2.69)] which form the
maximal compact subgroup of the Euclidean space SO(S5, 1) conformal
group — the symmetry group for classical Euclidean-space Yang-Mills
theory [56]. The anti-self-dual solution can be gotten from the above
by replacing a*” by the anti-self-dual matrices a*” ,
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aMl =—*gh¥ = %(a“&'”—a"’»'&“) : (3.63)
- i

Although only the |N| = 1 solutions are physically important, both
physicists and mathematicians have been fascinated by the multi-instanton
configurations. It has been shown that for SU(2) the |V |-instanton solution
depends on 8 | V| — 3 parameters, which can be interpreted as 5 |V | size and
position parameters, and 3 |V | — 3 parameters specifying relative orientations
in the 3-parameter SU(2) group space [57]. The most general instanton
solution which can be simply written has been found by physicists. The

self-dual solution is [58]

2
A =ia*’y, Inp , p= Nil ———)\'—-— . (3.64)
i=1 (x—y,-)2

It is regular — the singularities are gauge artifacts — closed under the
conformal group, and depends on SN + 4 gauge invariant parameters for
N > 3, on thirteen parameters for N = 2, and on five for N = 1. [Some of
the parameters in (3.64) are gauge artifacts.] While the field strength is
complicated, the Pontryagin density is given by the elegant formula

tr*F4PF,, =001np (3.65)

1672

and the Pontryagin index is N [59]. Evidently, for N = 3 (3.64) is not the
most general solution. Mathematicians have given a constructive procedure,
which involves (many!) finite steps, for constructing any of the most general
8 | N| — 3 parameter solutions [60] ; however, no closed expression analogous
to (3.64) is available.

Exercise 3.10. Show that the (Euclidean space version of ) of the energy-momentum
tensor (2.33) vanishes on self-dual and anti-self-dual field strengths.

4. Fermion Interactions and Anomalies

4.1 Quantized Fermions

To be realistic, a Yang-Mills theory must be supplemented by other fields,
coupling to it in a gauge invariant manner. While scalar fields are used to



