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4.3 Chiral {or Axial Vector )Anomalies

‘'The fact that classical symmetries need not survive quantization is now a
well-established, but still poorly understood fact. The whole subject of
symmetry plays a much more vigorous role in a quantum theory than it
ever did in classical dynamics. For aesthetic and practical reasons, we prefer
theories with a high degree of symmetry, but because Nature is asymmetric,
we must also account for this symmetry breaking. The oldest and most
primitive idea for symmetry breaking is that of “approximate” symmetries.
One supposes that there are terms in the Lagrangian that violate the symmetry,
but they are “small”. More refined is the concept of spontaneous symmetry
breaking, introduced by W. Heisenberg in condensed-matter physics, and
extended by him as well as by J. Goldstone and Y. Nambu to the particle-
physics domain. Here the dynamical equations are completely symmetric,
but energetic considerations of stability indicate that the ground state is
asymmetric. As is well known, these ideas are realized in the modern theory
of low-energy processes involving pseudo-scalar mesons, principally the pion
and in the unified models for weak, electromagnetic as well as (speculatively )
strong interactions. Anomalous breaking of symmetries — the third, most
subtle mechanism — arises from quantum mechanical effects, in a way whose
fundamental origin remains obscure. Certainly there are no energetic or
stability considerations as in spontaneous breaking. Our only clue comes
from perturbation theory: there does not exist a regularization procedure
which respects the anomalously broken symmetries. In addition to the scale
and conformal symmetries, on whose anomalous breaking I have already
commented, it is the chiral fermion symmetries that are anomalously broken
and that possess a rich topological structure, even in flat space. Both
symmetries are dimension-specific hence dimensional regularization breaks
them. Both symmetries rely on zero-mass fields, hence Pauli- Villars regulari-
zation breaks them as well.

Nevertheless, there is good reason to believe that anomalies are not obscure
consequences of problems with perturbation theory, but reflect a deep fact
about Nature, which when understood will surely illuminate a whole complex
of related ideas: chirality, spontaneous mass generation, spontaneous
symmetry breaking and the reasons for parity violation. Moreover, as I shall
show in a two-dimensional example, the occurrence of anomalies can be
established from general principles, with no recourse to perturbation theory.
In that example, the anomaly will also be responsible for spontaneous mass
generation. In higher dimensions, we do not have such explicit construction
of the anomalies, but we shall present non-perturbative/topological arguments
for the existence of some of them.
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Thus we expect that anomalies are a true aspect of quantum mechanical
Nature, and their prevalence in all branches of physics gives support for this:
consequences of scale and chiral anomalies are widely proliferated in particle
physics [61]; scale (= trace) anomalies are widely studied in gravity theory
[13], even though chiral anomalies have not yet had an impact there [62];
finally in condensed -matter physics, scale anomalies lead to the understanding
of critical phenomena [63] and chiral anomalies are just beginning to enter
the field [64].

Although the subject is contemporary [65], the idea that symmetries
may be broken by quantum effects possesses a prehistory. Before the neutrino
hypothesis, some speculated that the 8-decay spectrum indicates a quantum
mechanical violation of energy conservation. Also before gauge invariant
Pauli- Villars regularization was developed for quantum electrodynamics,
there was some question whether electromagnetic gauge invariance could
be maintained in a quantum field theory. Both puzzles were ultimately
resolved, and symmetries were maintained, but the idea that quantum effects
can eliminate a classical conservation law has survived and is realized in the
anomaly phenomenon.

Since anomalies arise from the unavoidable infinities of relativistic and
local field theory, specifically when fermions are involved (Dirac’s negative
energy sea is one example) the resulting formulas for the anomalies reflect
the ambiguities which arise when infinities are regulated. Consequently,
there is a certain amount of arbitrariness in the expressions. In perturbation
theory, the source of ambiguity comes from the fact that the renormalization
rules for perturbation theory allow adjusting the value of any graph by
arbitrary local functions of the coordinates (polynomials in the momenta).
These local terms can also modify current divergences.

The arbitrariness is somewhat limited when it is realized that three different
types of currents are under discussion:

(1) The most important current in a gauge theory is the source current
J¥ to which gauge fields couple. If it is possible, the regularization and
renormalization scheme must be chosen in such a way that this current
be covariantly conserved. Moreover, all other physical quantities must be
gauge invariant, and the regularization procedure must define them in a
gauge-invariant fashion. If it is impossible to maintain source current con-
servation, the theory loses gauge invariance, and it is therefore rejected
[66]. |

(2) There may also be in the model Noether symmetry currents j# which
are classically conserved, but are not coupled to gauge fields. Their regularized
version should be defined consistently with the gauge principle, but if they
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fail to'be conserved, the theory need not be rejected, although its symmetry
will be reduced.

(3) Finally there may be “‘partially” conserved currents, whose formal
divergences are “small”, reflecting an ‘“‘approximate’’ symmetry. The
anomalies associated with these currents are the most arbitrary, since it
may not be possible to separate unambiguously a quantum addition to a
nonzero divergence which is already present classically. Nevertheless the
regularization should be gauge invariant.

Here I shall discuss mainly chiral anomalies of the first two categories.
Before examining them in realistic four-dimensional models, let us look
at some two-dimensional Abelian models where much the same phenomena
can be seen in a simpler setting where results can be established without
perturbation theory. (There are no anomalous divergences of chiral currents
in three- or any other odd-dimensional space-time; however, there are
other chiral anomalies in odd -dimensional field theories; see section 5.2.)

In two dimensions, Dirac fields are two-component objects (aside from
any further degrees of freedom associated with internal symmetry) and
Dirac matrices may be chosen to be Pauli matrices:

Yo=¢" , y'=ioc? , ys=-ic® . (4.7)

A peculiar property of these two-dimensional matrices, which leads to all
our results, is that the axial vector is dual to the vector.

e*Vy, =iv*y, , €’ =1=-¢,, ) (4.8)

Hence the axial vector current j# = hiy*v ¥ is dual to the vector current
jt=hyrty,

js =€), (49)

But now it follows that in a dynamically non-trivial theory, both currents
cannot be conserved. To see this, consider the vacuum correlation function
of two vector currents, whose most general, Poincaré-invariant, form is

v

GE)jP(p)y=8g"" T (x-y)- Hz(x_y)

ok e’ a,, Vet a, |
+ __.__D + ———-—-—-—D I,(x-y) . (4.10a)
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The axial vector-vector correlation function is determined by the above

GE@) V(N = e ()" ()
3 oY

= BV I, (x - y) - bt —

I, (x~y)

’ koY
~{g"" -2 - I,(x-y) . (4.10b)

Vector current conservation requires II; — II, = 0, and II; = 0, but axial
vector conservation would be obtained only if II, = 0 and II3 = 0. The
two are incompatible for a non-trivial theory.

Detailed calculation reveals that the one-loop graph contributing to the
two-current correlation function cannot have its logarithmic divergence
regulated so that both vector and axial vector vertices are conserved [67].
Moreover, when these currents arise in an Abelian gauge theory with massless
fermions — if the coupling is vector-like one is speaking of the well-known
Schwinger model of two-dimensional massless electrodynamics [68] — the
functional determinant may be explicitly computed. Three couplings to
Dirac fermions may be considered: vector, pseudovector, and chiral, giving
rise to the following determinants:

Ay(A)=det(d+ied) ,
A, (A)=det(P-evsd)
As(A)=det(P+ie+A(12iys)) . (4.11)

By virtue of (4.8), the last two determinants may be rewritten in the same
form as the first, since iv*ys 4, = v*{-€,,4"} and —;—7‘“(1 tiys)A,

= % (guv ¥ e“v)A” | . Notethat % (g"¥ ¥ €M) isa projection operator;
only one component of A* couples. Since the first determinant is known
[68], closed forms can be given for all three:

he?
2w

~ihln A, (A4) = Idxdy

9,0

v

X A%(x) [gwal— ]5(x—y)A”(y) , (4.12)
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- he?
—-ihlnA,(4) = Idxdy
2m

a“av
X A#(x) uvds ~ S(x_y)Av(y) ’ (4-13)

| _ he? ) 3,9,
—ihln A3(A)— 'g; Id)CdyA (x) g“v-— 2 0

9,¢€, 3% 9, €,,0%

M “va VAT

¥ ¥ 8(x-y)A®
- - J (x-y)A%(y)

(4.14)

Here a, and 4, are coefficients of local terms which are undetermined by the
one-loop graph — they may be fixed at will. For the vector case, gauge
invariance dictates that a, be set to unity. The determinant is then gauge
invariant; the vector current is the source current and it is conserved. But the
axial vector current — a Noether current for the axial vector symmetry of
massless fermions and obtained by operating with €#”5/84,, on the deter-
minant — possesses an anomaly [67].

ihln A, (A4) hezjd FHY : F he’ dx *F : *
’ 4n SR L=
he he
“’z ' — e —— 1134 — ara ——
8,J4 =0, a“_js e, == — (4.15)

(Here and below, the factor hin the anomalous divergence is present because
the current is defined with that factor as well. Also hreflects the “one-loop”
nature of the anomaly.) A similar gauge-invariant expression for the deter-
minant emerges in the second case with a, set to unity. A conserved axial
vector current exists, but now the anomaly is in the vector current — the
Noether fermion number current:

ihinA,(4) hezjd FHY : F he” dx *F 1 *F
—ihln =—- — |dx o = — Ydx *F —*F ,
2 4n o *  2n O
; e he v B he .
B“Js =0 , a“] = E € F,uv_ 7 F . (4.16)
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In both cases, the anomalously non-conserved current may be defined
gauge invariantly, and the anomaly is gauge invariant, given by twice the
Pontryagin density. Finally, in the third case, the local term cannot be
adjusted at will because the kernel must have the projection properties of
(84» * €,,) so that only one component of 4, be present in (4.14). This
is assured by the expression exhibited, which however is not gauge invariant,
Rather one finds

he? | 1 1

—~ihlnA3(A4) = ————5d2x (*F — *FFRF 9 AH - —-A2),
4 O o * 2

9, J¥=*% —f—lf—(*Fia A¥) = —El—e—( ‘“’# )9, A (4.17)
v 47 # 47 & ¢ pow o '

The anomaly is not even gauge invariant, though it can be written as a total
divergence. Since here the source current is not conserved, the quantized
gauge theory has lost gauge invariance [66, 69].

Exercise 4.1. Verify from the explicit formulas for the appropriate determinants
that the anomalous divergence equations are given by (4.15), (4.16) and (4.17).

Let us observe that in the first two (consistent) examples the anomaly
is expressed by the two-dimensional Pontryagin density (3.51). Moreover,
one may also show that the massless vector meson spontaneously acquires
a mass without the intervention of scalar symmetry breaking fields. A
straightforward argument, applied to the vector Schwinger model (first
example above), makes use of the topological quantity that emerges in
connection with the axial vector anomaly. Consider the gauge field equation

a#F“"=eJ” . (4.18a)
By contracting with ¢, this becomes
AH*F=ej§ . (4.18b)

Taking a second divergence and using the anomalous conservation equation
for j& yields a free equation for *F which shows explicitly that the gauge
field is massive [70]. (Recall that the two-dimensional coupling constant
has the dimension of mass, in units where h and the velocity of light are
dimensioniess. )
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he?

O*F =ed, j¥ = Foo (4.18¢c)

While we shall see another topological mechanism for vector meson mass
generation in three space-time dimensions, no similarly elegant result has
yet been established in four dimensions.

If in the models with chiral couplings we drop the components of the
Dirac field that do not participate in the interaction, we can write the respective
fermionic Lagrangians & (% _) solely in terms of right (left ) spinors coupled to
5 (84, — €,,)A” whose only non-vanishing component is 4 * = (A4° + A1)/
V2 [respectively, 3(8&,, + €,,)A” with non-vanishing component 4~ =

A°-4aYH)/V72 1.

L, =nf,({f-ed)V, - (4.19)
The fermion determinants, obtained from (4.14), are respectively

he? 9,

—ihln A% (4)=—- —j4*— 4" ) (4.20a)
4n 0_
he? 9

~ihlnA; (4)=—- — |4 —A~ . (4.20b)
4 0

+

On the other hand, the vector theory (Schwinger model) is described by a
fermionic Lagrangian which is the sum of left and right Lagrangians.

L, =% +% . - (4.21)

In this model, the conservation of the vector current, as dictated by gauge
invariance, and the anomalous non-conservation of the axial vector current,
see (4.15), indicate that separately the right and left currents are not conserved,
but their sum is. Why this should be the case, in spite of the fact that the
formal Lagrangian in (4.21) exhibits no interaction between left and right
spinors, is the surprise of the chiral anomaly. The puzzie is resolved when it
is appreciated that the gauge invariant effective Lagrangian given by the
fermion determinant (4.12) with @, = 1, is not merely the sum of left and
right terms, neither of which is separately gauge invariant nor is their sum.
Rather, to insure gauge invariance a contact term which couples left to
right must be added.
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he?
2n?

This shows how the anomaly in the axial Noether current is forced by
demanding vector gauge invariance. Also, we see that, contrary to assertions
in the literature [62], the determinant for Dirac fermions is not merely the
product of determinants for Weyl fermions of each chirality.

Finally, we remark that very similar results hold in two-dimensional
non- Abelian fermionic models, since also for these the fermionic determinant
may be evaluated, not explicitly in terms of the vector potentials as in (4.12)
and (4.14), but rather in terms of non-local matrix functionals of the vector
potentials defined by A, = g, ' 9, g,,where g, are group elements [71].

Turning now to anomalies in four dimensions, the following summarizes
the results of the last decade’s research [72] . Whileit is impossible to evaluate
the functional determinant exactly, the anomalous graphshave been identified
— they are the reflection non-symmetric triangle graphs, involving one or
three axial vertices [73]. No other graphs introduce new structures, except
that one may need to adjust them so that the anomalous divergence possesses
a preferred form [74]. Consequently purely vectorial gauge theories, like
quantum chromodynamics are gauge invariant. However, when the fermions
are massless, the gauge invariant, group singlet axial vector Noether current
7% is not conserved. Rather it satisfies

_ihlnA,(4) = —ihInA% (4)A] (4) + IA*A‘ . (422)

87 ntd

h
uap F 2
= g3 0, "N Fpp A, — A Ay A)

2
o € P tr (A0 + FAlySlgsd,) . (4.23)
For one fermion in the fundamental representation, this is twice the
Pontryagin density apart from —h. Since the anomaly is a total divergence,
[see (3.44)] a conserved axial vector current can be defined, but it is not

gauge invariant:
ji=j4+2net =3, 7 =0 . (4.242)

The charge constructed from the conserved current is time independent
and invariant against small gauge transformations. Under a large gauge
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transformation, it changes by h times twice the winding number of the
transformation, since the anomalous addition to the charge is twice hiW(A),
see (3.45), whose gauge transformation properties are established in (3.39),

0= [ariz . .= forgtame) =0, +2mwia) |

4,09 =05 +2hn, . (4.24b)

With vector gauge couplings and massless fermions there are also non-
singlet axial vector currents j%§, which classically are covariantly conserved.
(They are not Noether currents since they are not “ordinarily” conserved.)
However, the covariant conservation law acquires an anomaly upon quanti-
zation,

ih

. b . — *
a#;ga+g];bcA“;*;c— P tr 74 .9‘"'“”37"“”

(4.25)
This is the obvious generalization of (4.23); but the anomaly is not a total
divergence.

There are also anomalies in source currents for gauge fields when axial
vector couplings are present. While there are no purely axial (iy* v5) non-
Abelian theories, chiral couplings ( 5 (1 £i7vs)7Y*) can occur if the fermions
are massless. For these the functional determinant responds to an infinitesimal
gauge iransformation in a non-trivial way. We give here the preferred result
for a simple group [66, 74]; for direct product groups there is some ambiguity
in handling the individual factors; see Exercise 4.2.

ih
(D“Jg)a - 2472 a#e“a37 trTa("daaﬂﬂﬁ' + %da‘dﬁ'ﬂ?)
= % ihg’ uap b c 41 b 4d 4e
= 2 T an? Dabcu €t (Ag 0p Ay + 58 cae AaAgAy ),
Dype = tr7¢ _;_{Tb’TC} ‘ (4.26)

If (4.26) is non-vanishing, the fermionic determinant is not gauge invariant
and the gauge theory is rejected. Note that the anomalous divergence is not
gauge covariant, which highlights once again that gauge invariance has been
lost. In particular (4.26) does not have the same structure as (4.23) with an
additional 7% matrix inside the trace, nor is it of the form (4.25).
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One may understand the total derivative structure of the anomaly (4.26)
in the following way. Recall from Exercise 2.19 that the conservation of the
Noether current j# arising from the rigid gauge invariance of the Lagrangian
is equivalent to the Yang-Mills field equation and the covariant conservation
of the source current J*. If the latter is not covariantly conserved, j* is not
conserved However, if D, J ¥ can be expressed as a total divergence, then
j* may be modified and a conserved current may be defined. This indicates
that the anomaly (4.26) leads to a breakdown of the local gauge symmetry,
but not of the rigid gauge symmetry.

Exercise 4.2. Consider the SU(2) X U(1) group, with a singlet vector potential a,
as well as a triplet of SU(2) gauge potentials A4 a , coupling chirally to a massless
féermion doublet. The determinant is

a ’
Y ‘ £
A(A) =det a+g—-—Aa+—-d . (E4.1)
21 21 :
Compute -the divergence of the singlet current using (4.26), and observe that it is
not SU(2) gauge invariant. Is it U(1) gauge invariant? Compute also the divergence
of the triplet current and show that it is neither SU(2) nor U (1) gauge covariant.
Show that one may modify the (unspecified) definition of —mlnA(A) Whlch
gives (4.26) by adding a local term, proportional to

KoBy a ¢
faxet® e, 0, 454545

so that the singlet current anomalous divergence is now given by an SU(2) X U(1)
gauge invariant expression. What is the (modified) divergence of the SU(2) current?
Alternatively, can the triplet current divergence be SU(2) X U(1), SU(2) or U(1)
gauge covariant? If so, what is the modified divergence of the singlet current?

Exercise 4.3. Derive the commutator algebra of the operators (D, 3 /6A ), and
compare with (3.26). By applying this commutator to det(§ + AM) find an inte-
grability condition that the anomalous divergence of J g must satisfy [75]. Verify
that (4.26) satisfies this condition, but that (4.25) does not. This condition is
called the Wess-Zumino consistency conditon.

Let us explain in detail the reason why anomalies (4.25) and (4.26)
differ in form. In the latter J¥ is given by the gauge variation of a functional
— the determinant for fermions of positive or negative chirality — and as a
consequence its divergence satisfies the Wess-Zumino integrability condition,
see Exercise 4.3. In the former j% is not the variation of anything; the
Noether current j4 does not result from a variation, since nothing couples
to it. Thus, its anomalous divergence need not satisfy the Wess-Zumino
condition, and one checks that (4.25) does not, see Exercise 4.3. (Statements
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in the literature that an anomaly “must” satisfy the Wess- Zumino condition
[61, 75, 76] are inaccurate; recently, this confusion has been extensively
elucidated [77].) On the other hand, since (4.25) arises in the consistent,
gauge invariant theory of QCD, it should be gauge invariant, as indeed it is,
while the gauge non-invariant formula (4.26) arises in a theory which has
lost gauge invariance.

In spite of the quite different physical settings for the two anomalies,
(4.25) and (4.26), there is a mathematical relationship between them.
Observe the identity

3,el PV (o, 050 + 5 HAoAgH)
+D, "V (oA, Bpd, + D, A, + 5 Aply )
3 v
= — *g '(//-—uv (4.27)
This means that if we add to J#

ih
247?

AJH

i
I+

et oY tr (oA, dpd, + 05t A, + 5 AoAyt,)
(4.28)

we shall obtain currents whose covariant divergence is (xih/ 1672 )"‘.ﬁ“"ﬁw
[78]. Since j& is the difference of the right chiral current and the left
current we recognize in this way the formula (4.25).

The meaning of this manipulation is the following. Regardless whether a
current is gauge source current or a Noether current, the same Feynman
diagrams describe its matrix elements. However, different local terms, which
are not determined by the diagrams, are appropriate in the two cases, and the
above addition A J* reflects the difference between the local terms contri-
buting to J4 and those in j§. Moreover, AJY will not in general be
integrable with respect to &/", and that is why j& will not be the variation
of anything, nor will its divergence satisfy the Wess- Zumino condition.

The quantity D,,. in (4.26) must vanish, if chiral couplings are to be
gauge invariant [66]. Two cases may be distinguished. It may be that for
all representations of the group, D,,; . = 0; these are called “safe”” groups and
they include SU(2) but no other special unitary groups, all orthogonal
groups except SO(6) ~ SU(4), and all symplectic groups. On the other
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hand even if the group is not safe, like SU(V), with N > 2, it may still be
that for some particular representations D,;. vanishes [79]. This then
gives a useful limitation on the allowed fermion representations.

For an Abelian gauge theory, an axial coupling is classically allowed if
the fermions are massless — we are speaking of axial electrodynamics. But
again, the axial vector current is not conserved, owing to the three axial
current triangle graph [73]; so axial quantum electrodynamics is not gauge
invariant.

One believes that the coefficients of the anomalies are not modified by
radiative corrections; a theorem proven for the vector Abelian theory —
electrodynamics [81]. Although the proof is technical, depending on details
of the renormalization procedure, the idea is simple. If one regulates the
photons, all divergences of the theory are removed, save those associated with
graphs containing fermion loops without photon insertions. But regulating
photons does not interfere with chiral symmetry, so chiral anomalies should
arise only from lowest-order fermion loops, with no further corrections.
(Correspondingly, scaling anomalies associated with the trace of the energy-
momentum tensor do possess corrections [10, 12] because any regulator
violates scale invariance.) Presumably the result holds in the non-Abelian
theory as well, but it may very well be regularization dependent. For example
in a supersymmetric theory, one should treat bosons and fermions on equal
footing, so regulating only boson lines would be inappropriate [82] .

1 shall postpone discussing the behaviour of the functional fermion
determinant under finite gauge transformations. Suffice it to say here that
physically interesting theories, like quantum chromodynamics with vector
couplings and unified models with chiral couplings, are invariant against
finite gauge transformations as soon as they are infinitesimally invariant.

4.4 Some Physical Consequences of Anomalies

We have seen that in two dimensions the axial anomaly is responsible
for generating a vector meson mass. Moreover, in physical four-dimensional
theories, the chiral anomaly has many applications [61]. We discuss here
the most important ones.

The Glashow-Weinberg-Salam unified theory of electro-weak interactions
utilizes chiral SU(2) x U(1) couplings. Since that is not a safe group, one
must insure the fermions lie in ‘safe representations. This can be done,
provided quarks and leptons balance in number. Thus the requirement that
the standard model be anomaly-free leads to the prediction that for every
observed lepton there should exist a quark [66]. The prediction has thus far



TOPOLOGICAL INVESTIGATIONS OF QUANTIZED GAUGE THEORIES 283

been verified; most recently the discovery of the 7 lepton was soon followed
by evidence for the “bottom’ quark. Now we are anxiously awaiting word
about the 7 neutrino and the “top’’ quark.

Once the chiral source currents for the electro-weak gauge fields are
conserved, the baryon number current acquires an anomaly [83] [just as
in the two-dimensional example the fermion number current is anomalous
with gauge-invariant axial-vector interactions; see (4.16)].

apf“ = —é?ztr*?“v?uv , ' (4.29)

Since the divergence of the baryon number current is proportional to
tr* FHV F L whenever that quantity is sizeable in a quantum process one
may expect “topological” baryon decay (which should not be confused
with “ordinary’ baryon decay in Grand Unified Theories). Two mechanisms
for topological baryon decay are known. The first involves tunnelling, and in
a semi-classical description instantons are the dominant field configurations.
For these, tr *# “”g«"w clearly is sizeable, but the tunnelling rate, being
exponentially small, is negligible [84]. However, as mentioned earlier, the
Pontryagin index of an 't Hooft-Polyakov monopole is also nonzero [52];
therefore one expects baryon decay in the presence of a monopole. While
the magnitude of this process is still controversial, there are arguments that
it is large [41]. Nevertheless, practical significance is obscured by the absence
of any experimental evidence for monopoles, other than just one reported
sighting [39].

Although I have not discussed anomalies in “‘partially conserved” currents,
one physical effect should be mentioned, since historically it opened the
subject [65]. The hypothesis of partial conservation of flavor SU(2) axial
vector currents (PCAC) implies, in the absence of anomalies, that a massless
neutral pion cannot decay into two photons [85]. But the physical pion
does decay, with a width of about 7.9 eV. This cannot be accounted for by
the finite mass of the physical pion. However, taking into account the
anomaly in the axial vector current of the type (4.21), which arises from
electromagnetic couplings, one obtains a non-vanishing result [86], that
depends on the number of quark colors. Excellent agreement (about 10%
too small) with the experimental number is gotten for three colors. (The
remaining discrepancy is attributed to finite mass effects of the pion.) There-
fore the anomaly provides an experimental determination of the number of
colors.
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For the final application, let us return to the four-dimensional vectorial
Yang-Mills theory, and inquire how the addition of fermions affects the
vacuum angle and the semi-classical picture of tunnelling. We discuss first
massless Dirac fermions, whose axial vector Noether current is anomalously
non-conserved, according to (4.23). For definiteness we consider a SU(2)
gauge theory with one fermion doublet, and we return to the Hamiltonian
formalism.

From (4.24) one sees that a conserved current does exist, and the time-
independent charge és is composed of two pieces; a gauge invariant contri-
bution coming from the fermions, and an anomalous term constructed from
gauge potentials, which we recognize to be twice hW(A), defined in (3.33).
As mentioned earlier, Qs is not invariant against homotopically non-trivial,
static gauge transformations; rather és shifts by twice the winding number
of the gauge function. The commutator algebra of the three operators H,
és and gn is

[H.0s1=0 , [H%,1=0, [9%,0s1=2nn9%,.
(4.30)

The three cannot be simultaneously diagonalized, and gauge invariance
requires that physical states be eigenstates of %, . But this means that Qs
acts as a lowering operator for 0.

i~
exp (—ff B'QS) Y, =Wy .00 (4.31)

Energy eigenvalues of H, which commutes with Qs, can no longer depend
on §; tunnelling is suppressed, and the entire energy band collapses to
one level. Physical, gauge and chiral invariant quantities cease to depend
on §. Moreover, chiral symmetry is spontaneously broken because states
are not chirally invariant. However, this spontaneous breaking does not
derive from energetic stability reasons as in the Goldstone-Nambu mechanism,
but rather it occurs because of the axial vector anomaly [46].

The same results may be seen in a functional integral formulation [47].
The generalization of (3.43) to include fermions is (gauge fixing terms
suppressed )

Zy = Igw@ YD AS, exp (—i-ﬁ-sdxﬂ) , - (432)
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where

1
¥ = — uF*F, -
2g2 Hy l6n

; WFRE,, +ihdyk (8, + o))

When the fermionic integration variable is redefined by a chiral transformation,

y—>e v o, VU ye : (4.33)

it would appear that the functional integral is left invariant. However, the
axial anomaly indicates that this is not so; rather Z, changes according to

Zy>Zy 590 - (4.34)

The detailed reason for non-invariance of the superficially invariant integral
in (4.32) has been traced to the singular nature of the fermion measure [87].
Physical quantities cannot be affected by changing integration variables
but such changes modify 8, so we must conclude that in the presence of
massless fermions the angle is not a physical parameter and can be set to
Zero.

In a semi-classical treatment, the suppression of tunnelling is recognized
after the fermion integration is performed. Then (4.32) leaves

Zy, = “QAZ det(d +.#)

i 1
X exp —f-l-jdx{——,;trF“”Fw- *FUYF
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(4.35)

When this integral is continued to Euclidean space, and dominated by a
tunnelling instanton configuration, it vanishes because the Euclidean Dirac
operator (§ +.#) possesses a zero eigenvalue [88], thus forcing the deter-
minant to vanish. Indeed, the number of zero modes of the Dirac operator
is counted by the Pontryagin index; a fact which relates the axial vector
anomaly to the topological Atiyah- Singer index theorem [89].

Exercise 4.4. Solve the four-dimensional Euclidean Dirac equation in the instanton
field (3.60) and find the expression for the zero mode eigenfunction.
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But physical fermions are not massless, and the § angle in the physical
quantum chromodynamical model remains observable. This now presents
a problem. Recall that 8 is a CP violating parameter, but the stringent
experimental limits on the neutron’s electric dipole moment require that
it be practically zero. (More accurately, the limit is § < 107? [90].) Yet
there is no known, physically acceptable principle which insures the vanishing
of 8. In particular, setting it to zero ab initio would not help for the following
reason. Although the origin of fermion masses remains obscure, we expect
that spontaneous symmetry breaking is responsible. In that context,
the fermion mass matrix would arise in the quantum chromodynamical
I_agranglan pointing in an arbitrary CP direction, i.e., its form would be
UM, ¥+ Y ysM,y. In order to isolate CP violating effects, one needs to
remove the term involving M;. This may be achieved by a chiral redefinition
of the Fermi fields, which formally leaves the rest of the Lagrangian invariant,
but actually — because of the axial vectoranomaly — inducesa tr *#*” % v
term, giving rise to a vacuum angle. Thus what is needed is a principle that
would insure that the “initial”’ value of § be precisely cancelled by this chiral
redefinition — but such a principle is missing.

We are facing a problem not unlike that of the cosmological constant
in gravity theory. The same general principles of invariance and renorma-
lizability which select the kinetic part of the Lagrangian, allow the additional
constant. Experimental observation, however, requires it to be zero. But
setting the constant to zero initially does not help because spontaneous
symmetry breaking gives rise to it anew. Of course one difference is that
the cosmological constant modifies the classical theory, while the vacuum
angle is a quantum effect.

Fortunately there is also good news for quantum chromodynamics from
the 8 angle and the associated phenomena. For a long time it appeared that
the theory possesses too much symmetry to be phenomenologically acceptable,
since it was not realized that‘és is gauge variant. This symmetry predicts
that there would be a particle degenerate with the pion, and no such particle
exists [91]. Now we recognize this to be a false prediction. The so-called
U(1) problem has dissolved [92]!

5. Quantization Constraints on Physical Parameters

We have seen that quantum mechanics and gauge invariance constrain the
structure of a consistent quantum field theory: the theory must be anomaly
free, and if there is a possibility of anomalies, fermions must transform



