
QUANTUM FIELD THEORY I
PROBLEMS

2nd semester 2022-2023

Solutions to Srendicki’s problems are available online, e.g. at

https://vdocuments.mx/qft-srednicki-solutions.html

I: Classical field theory

(1) Consider a system of N coupled harmonic oscillators with potential

V =

N∑
i=1

κ

2
(qi+1 − qi)

2. (1)

Determine the normal coordinates and the eigenvectors of the potential, with boundary con-
ditions q0(t) = qN+1(t) = 0. Determine directly the equations of motion and the normal
coordinates in the continuum limit without using the Lagrangian, by taking the continuum limit
of the result obtained in the discrete case.
Solution: e.g. Sect. 2.3 of the textbook by David Morin:
https://scholar.harvard.edu/david-morin/waves.

(2) Consider the Lagrangian density

L(x) = ∂µϕ
∗∂µϕ−m2|ϕ|2. (2)

where ϕ is a complex classical field. Derive the classical equations of motion and solve them
using the method of normal coordinates.

(3) Optional: problems 5.2a-d, 5.4 and 5.5 of Radovanović

II: The Poincaré group, symmetries and Noether’s theorem

(4) Show that requiring invariance of the metric upon Lorentz transformations

Λµ
νΛ

ρ
σg

νσ = gµρ, (3)

and writing the infinitesimal transformation in terms of its generators Jρσ

Λµ
ν = gµν +

i

2
ωρσJρσ

µ
ν , (4)

completely fixes the explicit form of the generators, viewed as 4 × 4 Lorenz matrices (Jρσ)
µ

ν ,
and determine their explicit expression.
Solution: see Eq.s (13-19) of the notes on the website.

(5) Derive the Lorentz algebra, i.e. the commutation relations

[Jµν , Jρσ] = −i (gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ) (5)

(a) using the explicit form of the generators which was found in problem (3);

(b) from the relation D(Λ′)−1D(Λ)D(Λ′) = D(Λ′−1ΛΛ′), which holds for any Lorentz represen-
tationD(Λ) in the case of infinitesimal transformations (see problem 1.11-b of Radovanović).

(6) Optional: problems 1.16 and 1.17 of Radovanović
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(7) Show that the Lagangian density

L =
1

2
(∂µϕ1∂µϕ1 + ∂µϕ2∂µϕ2)−

m2

2

(
ϕ21 + ϕ22

)
− λ

(
ϕ21 + ϕ22

)2
(6)

is invariant under the transformation (
ϕ′1
ϕ′2

)
= R(θ)

(
ϕ1
ϕ2

)
(7)

where R(θ) is a rotation matrix by an angle θ. Determine the Noether current and charge.
Solution: see problem 5.11 of Radovanović.

(8) Optional: problems 5.12, 5.14b, 5.15, and 5.17 of Radovanović

(9) Consider the Maxwell Langrangian

L = −1

4
FµνF

µν , (8)

with
Fµν = ∂µAν − ∂νAµ. (9)

Determine the energy-momentum tensor T ′µν explicitly in terms of the fields aµ through Noether’s
theorem, and show that it is not symmetric. Determine explicitly the prepotential Aρµν = −Aµρν

such that
Tµν = T ′µν + ∂ρA

ρµν (10)

is symmetric and given by the so-called Belinfante form

Tµν = −1

2
(FµαF ν

α − Lgµν) . (11)

Solution: see problem 5.18 of Radovanović.

(10) Optional: problem 5.19 of Radovanović.

(11) Show that the momentum operator for a real scalar quantum field, namely

P⃗ = −
∫
d3xϕ̇(x⃗, t)∇⃗ϕ(x⃗, t) (12)

generates translations of the field operator, i.e.

[P⃗ , ϕ(x⃗, t)] = −i∇⃗ϕ(x⃗, t). (13)

III: Canonical field quantization of scalar fields

(12) Derive the canonical commutation relation for the scalar field operator

[ϕ(x⃗), π(x⃗′)] = iδ(3)(x⃗− x⃗′) (14)

from the expression of the field operators ϕ and ϕ in terms of creation and annihilation operators,
and the commutation relation satisfied by the latter.

(13) Optional: problems 7.6 b-f, 7.7 and 7.8 of Radovanović.
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IV: Vector and spinor fields

(14) Show that the spin operator for the electromagnetic field has the form

si = ϵijk
∫
d3xEjAk (15)

=

∫
d3k

(2π)3

∑
s=±

(
ϵijkεs

k⃗

∗
j
εs
k⃗k

)
as
k⃗

†as
k⃗
. (16)

(15) Prove that if γµ are n× n matrices satisfying the Clifford algebra

{γµ, γν} = 2gµµI, (17)

where I is the n-dimensional identity matrix, then the matrices

σµν =
i

4
[γµ, γν ] (18)

satisfy the Lorentz algebra, as given in problem 4, Eq. (4).

(16) Prove that the matrices σµν Eq. (16) satisfy the equation

Λ−1
1/2γ

µΛ1/2 = Λµ
νγ

ν , (19)

where

Λ1/2 = exp− i

2
ωαβσ

αβ (20)

Λµ
ν =

(
exp− i

2
ωαβ(J

αβ

)µ

ν (21)

and Jαβ are the generators of the Lorentz group (see problem 4)(
Jαβ

)µ
ν = i

(
gµαgβν − gµβgαν

)
. (22)

It is sufficient to prove the result in the case of infinitesimal transformations.

(17) Write the Dirac equations satisfied by the left and right component of a generic Dirac field ψ,
defined as ψL ≡ 11−γ+5

2 ψ; ψR ≡ 11+γ+5
2 ψ. Determine explicitly the form of the γ5 matrix in the

Weyl representation of Dirac matrices.

(18) Show that if the solutions of the Dirac equations are normalized as

ūr(p)us(p) = 2mδrs (23)

then
ur(p)

†us(p) = 2Eδrs, (24)

where E = p0.

(19) Optional: problems 4.6, 4.10, 4.11 and 5.13 of Radovanović.

(20) Define creation and annihilation operators bs(p), b
†
s(p), ds(p) and d†s(p) for the Dirac field ac-

cording to

ψ(x) =

∫
d3p

(2π)3
1√
2E

∑
s

(
us(p)bs(p)e

−ipx + vs(p)d†s(p)e
ipx

)
(25)
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where u and v are solution to the momentum-space Dirac equation, and determine in term of
these operators the expression of the Dirac Hamiltonian

H =

∫
d3xψ̄

(
iγ⃗ · ∇⃗+m

)
ψ(x). (26)

Solution: see problem 8.2b of Radovanović.

(21) Optional: problems 5.2e, 8.2a,c 8.3 and 8.9 Radovanović.

V: Path integral and Green functions

(22) Determine the classical action for a one-dimensional free particle with fixed initial and final
conditions. Determine explicitly the matrix element of the time-evolution operator

K(q′t′; q, t) = ⟨q′, t′|e−iH(t′,−t)|q, t⟩ (27)

and show that is equal to the exponential of the classical action, times a factor of i.
Solution: see problem 6.1b,c of Srednicki.

(23) Show that the ground-state wave functional for a free real scalar field such that

ϕ̂(x)|ϕ(x)⟩ = ϕ(x)|ϕ(x)⟩ (28)

has the form

⟨ϕ(x)|0⟩ = N exp−1

2

∫
d3k

(2π)3
ϕ∗(k)

√
k⃗|2 +m2ϕ(k), (29)

where N is a suitable normalization.
Solution: see problem 8.8 of Srednicki.

(24) Compute, using the generating functional, the four-point function

G(4)(x1, x2, x3, x4) = ⟨0|T [ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)] |0⟩ (30)

for a free real scalar field.

(25) Optional: problems 6.4, 6.5, 6.9, 6.10 of Radovanović.

(26) Prove that if θi are (complex) components of an n-dimensional vector of Grassmann numbers
and B is an n× n matrix then∫ ∏

i

dθ∗i dθje
−θ∗

i Bijθj = B−1
ij detB. (31)

(27) Compute explictly the two-point function for a Dirac field

G(2)(x1, x2) = ⟨0|Tψ(x1)ψ̄(x2)⟩ (32)

by expressing the field in terms of creation and annihlation operators and using the anticommu-
tation relations.
Solution: see problem 8.1 of Radovanović.
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VI: The reduction formula and Feynman rules

(28) Prove that if one defines

ak⃗(t) ≡ i

∫
d3x√
2ω
ei(ωt−k⃗·x⃗) d

dt

↔

ϕ(x⃗, t) (33)

then

ϕ(x) =

∫
d3k

(2π)3
√
2ω

(
e−ikxak⃗(t) + eikxa†

k⃗
(t)

)
. (34)

(29) Prove the reduction formula for a fermion field, namely, for incoming and outgoing particles,

⟨p1 . . . pn|k1 . . . km⟩ =
∫
d4x1 . . . d

4xnd
4y1 . . . d

4yme
i(p1x1+···+pnxn−k1y1−···−kmym) (35)

ū(p1)S
−1(x1) . . . ū(pn)S

−1(xn)⟨T
(
ψ̄(x1) . . . ψ̄(xn)ψ(y1) . . . ψ(ym)

)
⟩ (36)

S−1(y1)u(k1) . . . S
−1(ym)u(km), (37)

and u ↔ v, ū ↔ v̄, k ↔ −k for outgoing or incoming antiparticles respectively (an outgoing
particle is like an incoming antiparticle and conversely).

(30) Write down the Feynman rules for the theories defined by the following Lagrangians:

L1 =
1

2

(
∂µϕ∂

µϕ−M2ϕ2
)
+ ψ̄ (i/∂ −m)ψ + gψ̄ψϕ; (38)

L2 = −1

4
FµνF

µν + (Dµϕ)
∗(Dµϕ)−m2ϕ∗ϕ; (39)

L3 = ψ̄1i/∂ψ1 + ψ̄2i/∂ψ2 +Gψ̄1γ
µψ2ψ̄2γ

µψ1; (40)

L4 = −1

4
FµνF

µν +
1

2

(
∂µϕ∂

µϕ−m2
sϕ

2
)
+

+ ψ̄ (i/∂ −mf )ψ − g′ψ̄γµψBµ +
g

4
ϕFµνF

µν , (41)

where in Eq. (38) ψ and ϕ are respectively a Dirac field and a real scalar field (Yukawa theory);
in Eq. (39) ϕ is a complex scalar field and Fµν is the Maxwell field strength tensor (scalar
electrodynamics); in Eq. (40) ψ1 and ψ2 are two Dirac fields (four-Fermi theory); and in Eq. (41)
Fµν is the Maxwell field strength tensor, ϕ is a real scalar field, ψ is a Dirac field and Bµ is an
external vector field (i.e. such that its free Lagrangian is nor part of the Lagrangian of the given
theory).

VII: Renormalization

(31) Perform one-loop renormalization of Yukawa theory, as given by the Lagrangian Eq. (38). List
all superficially divergent amplitudes and the countertermes which are needed in order to make
them finite, and write the renormalized Lagrangian. Compute the fermion-antifermion-scalar
three-point function and use the result to determine the renormalization of the coupling.
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