
Solution to the exam of QUANTUM PHYSICS I of
07 february 2025

(1) First write x̂ i.t.o. a, a†:

x̂ =

√
h̄

2mω
(a+ a†) (1)

Then ⟨x⟩ = ⟨λ|x|λ⟩ =
√

h̄
2mω ⟨λ|a + a†|λ⟩. |λ⟩ is an eigenstate of a with eigenvalue λ(coherent

state), so ⟨λ|a|λ⟩ = λ and ⟨λ|a†|λ⟩ = λ. Therefore we have:

⟨x⟩ = λ

√
2h̄

mω
≡ x0 (2)

(2) Repeating the same for the momentum operator:

p̂ = −i
√
mωh̄

2
(a− a†). (3)

⟨p⟩ = ⟨λ|p|λ⟩ = −i
√
mωh̄

2
⟨λ|a− a†|λ⟩ = −i

√
mωh̄

2
(λ− λ) = 0. (4)

(3) The uncertainty in the position is defined as:

∆2x = ⟨x2⟩ − ⟨x⟩2, (5)

so we still need ⟨x2⟩:

⟨x2⟩ = ⟨ h̄

2mω
(a+ a†)2⟩ = h̄

2mω
⟨λ|a2 + a†2 + aa† + a†a|λ⟩ (6)

Since
[a, a†] = 1 =⇒ aa† = 1 + a†a (7)

we can compute the products as

⟨x2⟩ = h̄

2mω
(4λ2 + 1). (8)

Combining this with Eq. (2), we obtain for the uncertainty

∆2x =
h̄

2mω
(4λ2 + 1)− 4λ2

h̄

2mω
=

h̄

2mω
. (9)

(4) Heisenberg’s EOM are
i

h̄
[H,O] =

dO
dt
, (10)
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and we use the H.O. Hamiltonian as given in the problem.

First, do it for x:

[H,x] =
1

2m
[p2, x] +

mω2

2
[x2, x] =

1

2m
(p[p, x] + [p, x]p) = −ih̄ p

m
. (11)

Putting this result into Eq. (10), we get

dx

dt
=
i

h̄
(−ih̄ p

m
) =

p

m
. (12)

For p, we do exactly the same:

[H, p] =
1

2m
[p2, p] +

mω2

2
[x2, p] =

1

2
mω2(x[x, p] + [x, p]x) = ih̄mω2x. (13)

So the EOM for momentum looks like

dp

dt
= −mω2x. (14)

In order to solve the equations, differentiate once more. First for x:

d2x

dt2
=

1

m

dp

dt
= −ω2x. (15)

This is a normal 2nd order linear D.E. with standard solution of the form

x(t) = A cosωt+B sinωt, (16)

which then implies
p(t) = mω(−A sinωt+B cosωt). (17)

Imposing the boundary conditions at t = 0 we get

A = xs; B =
ps
mω

. (18)

(5) From Eq. (4) we know that ⟨p(0)⟩ = 0 so B = 0. Imposing A = ⟨xs⟩ and using Eq. (2) we get

⟨x(t)⟩ = 2λ

√
h̄

2mω
cosωt. (19)

Eqquation (17) then immediately implies

⟨p(t)⟩ = −λ
√
2mωh̄ sinωt. (20)

(6) See pag. 157, sec. 8.5.2 of the textbook.
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(7) The possible measurement outcomes are the eigenvalues of the operator. Because the operator
only acts on the subspace spanned by the |0⟩ and |3⟩ harmonic oscillator eigenstates, the possible
outcomes are the eigenvalues of the operator in this subspace, while in the rest of the Hilbert space
the operator has eigenvalue 0. Hence in order to determine the probabilities of measurements
whose result is nonzero the only relevant harmonic oscillator eigenstates are |0⟩ and |3⟩, and we
can ignore the other states and focus only on the terms c0|0⟩ and c3|3⟩.
The eigenvalue condition in the subspace is

O|ψ⟩ = (|0⟩⟨3|+ |3⟩⟨0|)(c0|0⟩+ c3|3⟩) = c3|0⟩+ c0|3⟩ =
!
= EO|ψ⟩ = EO(c0|0⟩+ c3|3⟩).

(21)

Then we obtain that c3 = EOc0 and c0 = EOc3, which leads to c0 = E2
Oc0, which tells us that

EO = ±1. As a conclusion, the possible measurement outcomes are EO = ±1, and the corre-
sponding states of the system after the measurements the corresponding (normalised) eigenstates:

|+⟩ = 1√
2
(|0⟩+ |3⟩)

|−⟩ = 1√
2
(|0⟩ − |3⟩).

(22)

What is left is to compute the probabilities:

P+ = |⟨+|ψ⟩|2 =
1

2
|(⟨0|+ ⟨3|)(c0|0⟩+ c3|3⟩)|2 =

1

2
|c0 + c3|2. (23)

P− = |⟨+|ψ⟩|2 =
1

2
|(⟨0| − ⟨3|)(c0|0⟩+ c3|3⟩)|2 =

1

2
|c0 − c3|2. (24)

(8) This is the same question as (7) if you take

|λ⟩ =
∞∑

n=0

cn|n⟩. (25)

From the previous question, the ratio of probabilities is:

P+/P− =

∣∣∣∣c0 + c3
c0 − c3

∣∣∣∣2. (26)

What remains then is to explicitly calculate the coefficients c0 and c3, up to an overall normal-
ization, since we only need their ratio. We do this by plugging Eq. (25) into the equation that
defines |λ⟩:

a|λ⟩ = λ|λ⟩ =⇒
∞∑

n=0

cna|n⟩ =
∞∑

n=0

cnλ|n⟩. (27)

Using that a|0⟩ = 0 and a|n⟩ =
√
n|n− 1⟩ for n > 0 we have:

∞∑
n=0

cnλ|n⟩ =
∞∑

n=1

cn
√
n|n− 1⟩ =

∞∑
n=0

cn+1

√
n+ 1|n⟩ (28)
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obtaining the condition

cn+1 =
λ√
n+ 1

cn =⇒ cn =
λ√
n
cn−1 =⇒ cn =

λn√
n!

c0 (29)

For the probability ratio we then have, using c3 = λ3
√
6
c0:

P+/P− =

∣∣∣∣c0(1 + c3/c0)

c0(1− c3/c0)

∣∣∣∣2 =

∣∣∣∣√6 + λ3√
6− λ3

∣∣∣∣2. (30)

(9) We have two time intervals to take into account: one before and one after the measurement,
respectively t < 0 and t > 0.

Before
At t = 0 the system is in the state |λ⟩. In order to determine the uncertainty at all times in this
state we use the results of question (5). We found that

p(t) = p(0) cosωt−mωx(0) sinωt =⇒
p2(t) = p2(0) cos2 ωt+m2ω2x2(0) sin2 ωt−mω{x(0), p(0)} sinωt cosωt,

(31)

Considering now the mean values of the operators at t = 0 we have:

⟨x(0)⟩ = 2λ

√
h̄

2mω
; ⟨p(0)⟩ = 0;

⟨x2(0)⟩ = h̄

2mω
(4λ2 + 1); ⟨p2(0)⟩ = mωh̄

2
⟨λ|a2 + a†2 − aa† − a†a|λ⟩ = mωh̄

2
.

(32)

We can substitute these into Eq. (31) to obtain:

⟨p(t)⟩ = −λ
√
2mωh̄ sinωt;

⟨p2(t)⟩ = mωh̄

2
cos2 ωt+

mωh̄

2
(4λ2 + 1) sin2 ωt.

(33)

Now we can obtain ∆2p(t):

∆2p(t) = ⟨p2(t)⟩ − ⟨p(t)⟩2 =
mωh̄

2
cos2 ωt+

mωh̄

2
sin2 ωt =

mωh̄

2
. (34)

We conclude that the uncertainty time-independent.

After
After the measurement, the state collapses into either |+⟩ = 1√

2
(|0⟩+ |3⟩) or |−⟩ = 1√

2
(|0⟩− |3⟩).

Noting that

p2 =
h̄mω

2

(
−a2 − a†

2
+ 2a†a+ 1

)
(35)

and that a2 and −a†2 only connect oscillator eigenstates that differ by two units, and finally
observing that p also has a nonvanishing matrix element only between eigenstates that differ by
one unit, we get

∆2p = ⟨p2⟩ = h̄mω

4

(
⟨0|2a†a+ 1|0⟩+ ⟨3|2a†a+ 1|3⟩

)
= 2h̄mω. (36)
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In conclusion:

∆2p(t) =

{
mωh̄/2 before measurement,

2mωh̄ after measurement.
(37)

(10) Recalling the value of ∆2x from question (3) and the value of ∆2x from question (9) we im-
mediately note that the state |λ⟩ is a minimum uncertainty state, hence it must be a Gaussian
wavepacket. Furthermore, from questions (1) and (2) we know that the wavepacket is centered
at x0 as given in Eq. (2) in position, and at p0 = 0 in momentum. The state |0⟩ in turn is also
a Gaussian wave packet centered at x = 0 and from question (9) we know that it has the same
width as the state |λ⟩ because the uncertainty in position is the same. Therefor, the state |λ⟩
can be obtained from the state |0⟩ by performing the translation x → x0. So Uλ is the finite
translation operator. Recalling that the generator of translations is i

h̄p we get

Uλ = e−x0
i
h̄p, (38)

where x0 is given by Eq. (2).

(11) From the previous question we know that |λ is the ground state of a harmonic oscillator centered
at x0. Therefore, it can be obtained as a result of the measurement of the hamiltonian operator

H ′ =
p2

2m
+

1

2
mω2(x− x0)

2. (39)
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