
Solution to the exam of QUANTUM PHYSICS II
of 17 June 2025

(1) We need to determine the energy spectrum of Hi =
p⃗2

2m− 3e2

ri
. This is a regular Coulomb potential

with a Bohr radius given by a = h̄2

3me2 and so we know the energy spectrum

Eni
= −m(3e2)2

2h̄2n2i
. (1)

The degeneracy is D = 2n2i if there is spin, and D = n2i if there is no spin.

(2) We deal with distinguishable particles, so there is no Pauli exclusion principle and the GS is just
the state with all particles in the lowest orbital n = 1. For distinguishable particles, we can add
the separate energies and the state is the product of all three states:

En =
∑
i

Eni = −m(3e2)2

2h̄2

(
1

n21
+

1

n22
+

1

n23

)
|ψ⟩ = |n1l1m1⟩|n2l2m2⟩|n3l3m3⟩

(2)

(3) Here we do include the d.o.f.’s of the spin, but we do not use the exclusion principle because the
particles are still distinguishable.

GS: n1 = n2 = n3 = 1, E1 = − 3m(3e2)2

2h̄2 with D=8, since we have no spatial degeneracy, but
each particle has D=2 from the spin.
1st excited state: one of the particles goes to the second orbital, so for the distinguishable
particles we then have three possible states:

|ψ⟩ = |100⟩1|100⟩2|2lm⟩3 ⊗ χ (3)

|ψ⟩ = |100⟩1|2lm⟩2|100⟩3 ⊗ χ (4)

|ψ⟩ = |2lm⟩1|100⟩2|10⟩3 ⊗ χ. (5)

Furthermore for the |2lm⟩ state in each case we have four possibilities, namely |100⟩, |21 − 1⟩,
|210⟩, |211⟩. Therefore for each of the three above states we have Dspat = 1 · 1 · 4 = 4, Dχ = 8,
and there is the degeneracy of having three states with the same energy, so Dtot = 4 · 8 · 3 = 96.

(4) For identical particles we need to antisymmetrize the total wave function, which implies the Pauli
exclusion principle. Hence in the GS we have two particles with n = 1 and one with n = 2, and
the GS energy is

E1 = −
(
1 + 1 +

1

4

)
m(3e2)2

2h̄2
= −9

4

m(3e2)2

2h̄2
. (6)

The wave function is the completely antisymmetric combination of three one-particle wave func-
tions |nlmχ⟩ (with χ = ± indicating the value of the third componento of spin): |100+⟩, |100−⟩,
|2lmχ⟩. As seen in the previous question the state |2lmχ⟩ is four times degenerate since l ≤ n and
−l ≤ m ≤ l, and moreover in each case χ can take the two values ±. Hence in total D = 4 ·2 = 8.

1



(5) Since the fundamental state is a combination of n = 1, n = 1 and n = 2, we have a combination
of l = 0, l = 0 and l = 0, 1. So in total, ltot = 0, 1. Since L2f = h̄2l(l + 1)f , we have L2 = 0 or
L2 = 2h̄2 in the GS.

(6) See Sect. 10.3.1 of the textbook, Eqs. (10.42)–(10.46)

(7) The first particle is in the state |2lm⟩, we assume no spin. Once the measurement of Lz = +h̄ is
done, the state is therefore

|ϕ⟩ = |211⟩. (7)

Now we determine the possible measurement outcomes of Pz = ih̄ (|l0⟩⟨l1| − |l1⟩⟨l0|). The out-
come of the measurement of an operator is one of its egienstates. But the given operator has
nonvanishing matrix elements only between the states |ℓ, 1⟩ and |ℓ, 0⟩. On the other hand the
state ϕ⟩ has ℓ = 1 so only the two states

|1⟩ = |l = 1,m = 1⟩; |0⟩ = |l = 1,m = 0⟩ (8)

are relevant because on any other state either the operator Pz has vanishing matrix element, or
the state |ϕ⟩ has vanishing scalar product. Therefore we want to diagonalize Pz in this subspace,
where it is equal to

Pz = h̄

(
0 −i
i 0

)
= h̄σy. (9)

Since this is just the second Pauli matrix, we already know its eigenvalues and -vectors, namely
±h̄ with states

|+⟩ = 1√
2

(
1
i

)
=

1√
2
(|1⟩+ i|0⟩) (10)

|−⟩ = 1√
2

(
1
−i

)
=

1√
2
(|1⟩ − i|0⟩) (11)

Now we can write |ϕ⟩ in terms of the Pz eigenstates as |ϕ⟩ = |1⟩ = 1√
2
(|+⟩ + |−⟩). So the

measurement of Pz can result in:
* +h̄ with probability |⟨+|ϕ⟩|2 = 1/2, where the state collapses to |+⟩
* −h̄ with probability |⟨−|ϕ⟩|2 = 1/2, where the state collapses to |−⟩

(8) |ϕ⟩ = |211⟩ and H ′ = H1 +Hz = H1 + BPz with B > 0. We can calculate the time evolution
operator as follows:

|ϕ(t)⟩ = e−iE2t/h̄e−iBPzt/h̄|ϕ(0)⟩ = e−iE2t/h̄e−iBPzt/h̄|1⟩, (12)

where E2 is the regular n = 2 one-particle Coulomb energy as previously calculated, and we are
only interested in the action of the operator Pz in the subspace of states Eq. (8), for the same
reason as in question (7). What is left is to calculate the Hz exponent:
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e−iBPzt/h̄ = e−iBσyt = cos(Bt) · I2×2 − i sin(Bt) · σy. (13)

After applying this to |ϕ(0)⟩ = |1⟩ =
(
1
0

)
, we find for the time-evolved state:

|ϕ(t)⟩ = e−iE2t/h̄(cosBt|1⟩+ sinBt|0⟩). (14)

The probability that the state is the same as at t=0 is then

|⟨ϕ(t)|ϕ(0)⟩|2 = |e−iE2t/h̄(cosBt⟨1|+ sinBt⟨0|)|211⟩|2 = cos2Bt. (15)

Note that E2 does not contribute to the probability because Pz commutes with H1 and therefore
the eigenvalue of H1 is conserved.

(9) We are asked to consider the same Hamiltonian as in the previous question, but now regard
Hz as a perturbation. Since the unperturbed Hamiltonian has a degeneracy of 4 at n = 2, we
use degenerate perturbation theory and diagonalize the perturbation. The four states are |100⟩,
|21− 1⟩, |210⟩, |211⟩. The matrix of Pz is

Pz = h̄


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 . (16)

As we know from problem (7) Pz only mixes the |l = 1,m = 0⟩ and |l = 1,m = 1⟩ states, and we
know that its eigenstates in this subspace are the states |+⟩ and |−⟩ Eq. (10,11) with eigenvalues
±Bh̄. For the states |l = 0,m = 0⟩, |1,−1⟩, the energy perturbation is zero.

It follows that the perturbed states are |l = 0,m = 0⟩, |l = 1,m = −1⟩ (or any linear com-
bination thereof) with energy E2 and degeneracy D = 2, and |+⟩ and |−⟩ with energy E2 ±Bh̄
respectively, nondegenerate.

Finally, we note that, as already mentioned, Pz commutes with the Hamiltonian H1, and thus
it can be diagonalized simultaneously. It follows that the exact spectrum of eigenstates and
eigenvalyes of H ′ is the same as that of H for all states with the exception of the two states
|210⟩, |211⟩, that are replaced by the states |±⟩, with energies E2 ± Bh̄. This means that the
first order perturbative result is actually exact.

(10) At first the system is in the spatial state with two particles in n=1 and one particle in n=2. The
measurement of the angular momentum yields Lz

tot = +h̄mtot = +h̄, so the state must be the
two particles in the GS and the one in the n=2 state having |l = 1,m = 1⟩. Because then indeed
Lz
tot = h̄ · 1 + 0 + 0 = h̄.

Then Sz
tot is measured. The two particles in the spatial GS remain the same (one having spin up

and one spin down, according to the exclusion principle). The particle in the first excited state
has spin up or spin down after the measurement. The wave function of the entire system can
then be written as
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|n, l,m, sz⟩tot =
1√
6

(
|100+⟩1|100−⟩2|111+⟩3 − |100+⟩1|111+⟩2|100−⟩3

−|100−⟩1|100+⟩2|111+⟩3 + |100−⟩1|111+⟩2|100+⟩3+

|111+⟩1|100+⟩2|100−⟩3 − |111+⟩1|100−⟩2|100+⟩3
)

(17)

if the measurement gives Stot
z = 1/2, and as

|n, l,m, sz⟩tot =
1√
6

(
|100+⟩1|100−⟩2|111−⟩3 − |100+⟩1|111−⟩2|100−⟩3

−|100−⟩1|100+⟩2|111−⟩3 + |100−⟩1|111−⟩2|100+⟩3+

|111−⟩1|100+⟩2|100−⟩3 − |111−⟩1|100−⟩2|100+⟩3
)

(18)

if the measurement gives Stot
z = −1/2.

(11) Sz
tot = msh̄ = ⟨sz1⟩+ ⟨sz2⟩+ ⟨sz3⟩. Since the particles are identical, we can write

⟨szi ⟩ = msh̄/3 = Stot
z /3 = ±h̄/2, (19)

where the last equality holds for Stot
z = ±1/2. You can also calculate the mean values of the

particle spins by looking at the wavefunctions. E.g. for particle 1 we have

⟨s1z⟩ =
1

6

(
1

2
+

1

2
− 1

2
− 1

2
± 1

2
± 1

2

)
= ±1

6
. (20)

Where the ± is for Stot
z = ±1/2. The same is true for the other two particles, which makes sense

because they are identical. The total mean value of the spin is then indeed ⟨s1z⟩+ ⟨s2z⟩+ ⟨s3z⟩ =
±1/2.
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